加强气候适应型城市河流恢复:地貌变化的预测模拟

IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Journal of Water and Climate Change Pub Date : 2023-10-24 DOI:10.2166/wcc.2023.233
Farzad Jalaeifar, Amin Sarang, Asghar Abdoli, Mohammad Hosein Niksokhan
{"title":"加强气候适应型城市河流恢复:地貌变化的预测模拟","authors":"Farzad Jalaeifar, Amin Sarang, Asghar Abdoli, Mohammad Hosein Niksokhan","doi":"10.2166/wcc.2023.233","DOIUrl":null,"url":null,"abstract":"Abstract Urbanization and climate change are two potent forces shaping the contemporary environment. Urban rivers, integral to city life, are profoundly affected by these dynamics. While restoration efforts have yielded promising results, a persistent challenge lies in the inadequate consideration of geomorphic processes and climate change impacts in restoration planning. This study addresses this critical gap by proposing a novel approach for designing stable urban river geometries in ungauged basins. Leveraging the Soil Conservation Service (SCS) method in conjunction with General Circulation Model (GCM) data, our research focuses on determining design discharge and channel stability. Our principal finding, based on the incorporation of parameters related to precipitation, runoff, and effective discharge, indicates a projected 35% increase in the width of stable urban rivers in the future. These results underscore the urgency of integrating climate change considerations into urban river restoration initiatives. Neglecting this imperative aspect risks the failure of restoration projects, particularly in addressing geomorphic challenges intensified by climate change. This research offers a valuable framework for future restoration efforts, ultimately contributing to the resilience and sustainability of urban river ecosystems.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":"55 5","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing climate-resilient urban river restoration: predictive modeling of geomorphic changes\",\"authors\":\"Farzad Jalaeifar, Amin Sarang, Asghar Abdoli, Mohammad Hosein Niksokhan\",\"doi\":\"10.2166/wcc.2023.233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Urbanization and climate change are two potent forces shaping the contemporary environment. Urban rivers, integral to city life, are profoundly affected by these dynamics. While restoration efforts have yielded promising results, a persistent challenge lies in the inadequate consideration of geomorphic processes and climate change impacts in restoration planning. This study addresses this critical gap by proposing a novel approach for designing stable urban river geometries in ungauged basins. Leveraging the Soil Conservation Service (SCS) method in conjunction with General Circulation Model (GCM) data, our research focuses on determining design discharge and channel stability. Our principal finding, based on the incorporation of parameters related to precipitation, runoff, and effective discharge, indicates a projected 35% increase in the width of stable urban rivers in the future. These results underscore the urgency of integrating climate change considerations into urban river restoration initiatives. Neglecting this imperative aspect risks the failure of restoration projects, particularly in addressing geomorphic challenges intensified by climate change. This research offers a valuable framework for future restoration efforts, ultimately contributing to the resilience and sustainability of urban river ecosystems.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"55 5\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.233\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.233","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

城市化和气候变化是塑造当代环境的两股强大力量。城市河流是城市生活不可或缺的一部分,受到这些动态的深刻影响。虽然恢复工作取得了可喜的成果,但在恢复规划中没有充分考虑地貌过程和气候变化的影响是一个长期存在的挑战。本研究通过提出一种在未测量的流域中设计稳定的城市河流几何形状的新方法来解决这一关键差距。利用土壤保持服务(SCS)方法结合环流模型(GCM)数据,我们的研究重点是确定设计流量和渠道稳定性。我们的主要发现,基于与降水、径流和有效流量相关的参数的合并,表明未来稳定的城市河流的宽度预计将增加35%。这些结果强调了将气候变化考虑纳入城市河流恢复计划的紧迫性。忽视这一重要方面可能会导致恢复项目失败,特别是在应对气候变化加剧的地貌挑战方面。这项研究为未来的恢复工作提供了一个有价值的框架,最终有助于城市河流生态系统的恢复力和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing climate-resilient urban river restoration: predictive modeling of geomorphic changes
Abstract Urbanization and climate change are two potent forces shaping the contemporary environment. Urban rivers, integral to city life, are profoundly affected by these dynamics. While restoration efforts have yielded promising results, a persistent challenge lies in the inadequate consideration of geomorphic processes and climate change impacts in restoration planning. This study addresses this critical gap by proposing a novel approach for designing stable urban river geometries in ungauged basins. Leveraging the Soil Conservation Service (SCS) method in conjunction with General Circulation Model (GCM) data, our research focuses on determining design discharge and channel stability. Our principal finding, based on the incorporation of parameters related to precipitation, runoff, and effective discharge, indicates a projected 35% increase in the width of stable urban rivers in the future. These results underscore the urgency of integrating climate change considerations into urban river restoration initiatives. Neglecting this imperative aspect risks the failure of restoration projects, particularly in addressing geomorphic challenges intensified by climate change. This research offers a valuable framework for future restoration efforts, ultimately contributing to the resilience and sustainability of urban river ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
10.70%
发文量
168
审稿时长
>12 weeks
期刊介绍: Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.
期刊最新文献
Analysis of different hypotheses for modeling air–water exchange and temperature evolution in a tropical reservoir Accounting for climate change in the water infrastructure design: evaluating approaches and recommending a hybrid framework Climatic characteristics and main weather patterns of extreme precipitation in the middle Yangtze River valley Water quality prediction: A data-driven approach exploiting advanced machine learning algorithms with data augmentation Consequence assessment of the La Giang dike breach in the Ca river system, Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1