基于ARFMF优化的并网混合DG系统潮流控制

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-10-24 DOI:10.32985/ijeces.14.8.12
Saleem Mohammad, S.D. Sundarsingh Jeebaseelan
{"title":"基于ARFMF优化的并网混合DG系统潮流控制","authors":"Saleem Mohammad, S.D. Sundarsingh Jeebaseelan","doi":"10.32985/ijeces.14.8.12","DOIUrl":null,"url":null,"abstract":"A power flow control scheme for a grid-integrated Hybrid DG System (HDGS) is presented in this work, utilizing an advanced random forest algorithm combined with the moth-flame optimization (ARFMF) approach. The proposed control scheme combines the random forest algorithm (RFA) and moth-flame optimization algorithm (MFO) for consolidated execution. The random forest algorithm (RFA), an AI technique, is well-suited for nonlinear systems due to its accurate interpolation and extrapolation capabilities. It is an ensemble learning method that combines multiple decision trees to make predictions. The algorithm constructs a forest of decision trees and aggregates their predictions to produce the final output. The moth-flame optimization (MFO) process is a meta-heuristic optimization procedure inspired by the transverse orientation of moths in nature. It improves initial random solutions and converges to superior positions in the search area. Similarly, the MFO is effective in nonlinear systems as it accurately interpolates and extrapolates arbitrary information. In the proposed technique, the RFA performs the calculation process to determine precise control gains for the HDGS through online implementation based on power variation between the source side and the load side. The recommended dataset is used to implement the AI approach for online execution, reducing optimization process time. The learning process of the RFA is guided by the MFO optimization algorithm. The MFO technique defines the objective function using system information based on equal and unequal constraints, including the accessibility of renewable energy sources, power demand, and state of charge (SOC) of storage systems. Storage devices such as batteries stabilize the energy generated by renewable energy systems to maintain a constant, stable output power. The proposed model is implemented on the MATLAB/Simulink platform, and its execution is compared to previous approaches.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"21 3","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Flow Control of the Grid-Integrated Hybrid DG System using an ARFMF Optimization\",\"authors\":\"Saleem Mohammad, S.D. Sundarsingh Jeebaseelan\",\"doi\":\"10.32985/ijeces.14.8.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A power flow control scheme for a grid-integrated Hybrid DG System (HDGS) is presented in this work, utilizing an advanced random forest algorithm combined with the moth-flame optimization (ARFMF) approach. The proposed control scheme combines the random forest algorithm (RFA) and moth-flame optimization algorithm (MFO) for consolidated execution. The random forest algorithm (RFA), an AI technique, is well-suited for nonlinear systems due to its accurate interpolation and extrapolation capabilities. It is an ensemble learning method that combines multiple decision trees to make predictions. The algorithm constructs a forest of decision trees and aggregates their predictions to produce the final output. The moth-flame optimization (MFO) process is a meta-heuristic optimization procedure inspired by the transverse orientation of moths in nature. It improves initial random solutions and converges to superior positions in the search area. Similarly, the MFO is effective in nonlinear systems as it accurately interpolates and extrapolates arbitrary information. In the proposed technique, the RFA performs the calculation process to determine precise control gains for the HDGS through online implementation based on power variation between the source side and the load side. The recommended dataset is used to implement the AI approach for online execution, reducing optimization process time. The learning process of the RFA is guided by the MFO optimization algorithm. The MFO technique defines the objective function using system information based on equal and unequal constraints, including the accessibility of renewable energy sources, power demand, and state of charge (SOC) of storage systems. Storage devices such as batteries stabilize the energy generated by renewable energy systems to maintain a constant, stable output power. The proposed model is implemented on the MATLAB/Simulink platform, and its execution is compared to previous approaches.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"21 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.8.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.8.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文利用一种先进的随机森林算法结合蛾焰优化(ARFMF)方法,提出了一种并网混合DG系统(HDGS)的潮流控制方案。该控制方案将随机森林算法(RFA)和蛾焰优化算法(MFO)相结合,便于统一执行。随机森林算法(RFA)是一种人工智能技术,由于其精确的内插和外推能力,非常适合于非线性系统。它是一种组合多个决策树进行预测的集成学习方法。该算法构建一个决策树的森林,并汇总它们的预测以产生最终输出。蛾焰优化(MFO)过程是受自然界飞蛾横向方向启发的元启发式优化过程。它改进了初始随机解,并收敛到搜索区域的优越位置。同样,MFO在非线性系统中是有效的,因为它可以准确地内插和外推任意信息。在提出的技术中,RFA通过在线实现,根据源侧和负载侧之间的功率变化,执行计算过程,以确定HDGS的精确控制增益。推荐的数据集用于实现在线执行的AI方法,减少优化过程时间。RFA的学习过程由最优解优化算法指导。MFO技术使用基于等约束和不等约束的系统信息来定义目标函数,包括可再生能源的可及性、电力需求和存储系统的荷电状态(SOC)。电池等存储设备稳定可再生能源系统产生的能量,以保持恒定、稳定的输出功率。该模型在MATLAB/Simulink平台上实现,并与以往的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Flow Control of the Grid-Integrated Hybrid DG System using an ARFMF Optimization
A power flow control scheme for a grid-integrated Hybrid DG System (HDGS) is presented in this work, utilizing an advanced random forest algorithm combined with the moth-flame optimization (ARFMF) approach. The proposed control scheme combines the random forest algorithm (RFA) and moth-flame optimization algorithm (MFO) for consolidated execution. The random forest algorithm (RFA), an AI technique, is well-suited for nonlinear systems due to its accurate interpolation and extrapolation capabilities. It is an ensemble learning method that combines multiple decision trees to make predictions. The algorithm constructs a forest of decision trees and aggregates their predictions to produce the final output. The moth-flame optimization (MFO) process is a meta-heuristic optimization procedure inspired by the transverse orientation of moths in nature. It improves initial random solutions and converges to superior positions in the search area. Similarly, the MFO is effective in nonlinear systems as it accurately interpolates and extrapolates arbitrary information. In the proposed technique, the RFA performs the calculation process to determine precise control gains for the HDGS through online implementation based on power variation between the source side and the load side. The recommended dataset is used to implement the AI approach for online execution, reducing optimization process time. The learning process of the RFA is guided by the MFO optimization algorithm. The MFO technique defines the objective function using system information based on equal and unequal constraints, including the accessibility of renewable energy sources, power demand, and state of charge (SOC) of storage systems. Storage devices such as batteries stabilize the energy generated by renewable energy systems to maintain a constant, stable output power. The proposed model is implemented on the MATLAB/Simulink platform, and its execution is compared to previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1