{"title":"基于ARFMF优化的并网混合DG系统潮流控制","authors":"Saleem Mohammad, S.D. Sundarsingh Jeebaseelan","doi":"10.32985/ijeces.14.8.12","DOIUrl":null,"url":null,"abstract":"A power flow control scheme for a grid-integrated Hybrid DG System (HDGS) is presented in this work, utilizing an advanced random forest algorithm combined with the moth-flame optimization (ARFMF) approach. The proposed control scheme combines the random forest algorithm (RFA) and moth-flame optimization algorithm (MFO) for consolidated execution. The random forest algorithm (RFA), an AI technique, is well-suited for nonlinear systems due to its accurate interpolation and extrapolation capabilities. It is an ensemble learning method that combines multiple decision trees to make predictions. The algorithm constructs a forest of decision trees and aggregates their predictions to produce the final output. The moth-flame optimization (MFO) process is a meta-heuristic optimization procedure inspired by the transverse orientation of moths in nature. It improves initial random solutions and converges to superior positions in the search area. Similarly, the MFO is effective in nonlinear systems as it accurately interpolates and extrapolates arbitrary information. In the proposed technique, the RFA performs the calculation process to determine precise control gains for the HDGS through online implementation based on power variation between the source side and the load side. The recommended dataset is used to implement the AI approach for online execution, reducing optimization process time. The learning process of the RFA is guided by the MFO optimization algorithm. The MFO technique defines the objective function using system information based on equal and unequal constraints, including the accessibility of renewable energy sources, power demand, and state of charge (SOC) of storage systems. Storage devices such as batteries stabilize the energy generated by renewable energy systems to maintain a constant, stable output power. The proposed model is implemented on the MATLAB/Simulink platform, and its execution is compared to previous approaches.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"21 3","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Flow Control of the Grid-Integrated Hybrid DG System using an ARFMF Optimization\",\"authors\":\"Saleem Mohammad, S.D. Sundarsingh Jeebaseelan\",\"doi\":\"10.32985/ijeces.14.8.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A power flow control scheme for a grid-integrated Hybrid DG System (HDGS) is presented in this work, utilizing an advanced random forest algorithm combined with the moth-flame optimization (ARFMF) approach. The proposed control scheme combines the random forest algorithm (RFA) and moth-flame optimization algorithm (MFO) for consolidated execution. The random forest algorithm (RFA), an AI technique, is well-suited for nonlinear systems due to its accurate interpolation and extrapolation capabilities. It is an ensemble learning method that combines multiple decision trees to make predictions. The algorithm constructs a forest of decision trees and aggregates their predictions to produce the final output. The moth-flame optimization (MFO) process is a meta-heuristic optimization procedure inspired by the transverse orientation of moths in nature. It improves initial random solutions and converges to superior positions in the search area. Similarly, the MFO is effective in nonlinear systems as it accurately interpolates and extrapolates arbitrary information. In the proposed technique, the RFA performs the calculation process to determine precise control gains for the HDGS through online implementation based on power variation between the source side and the load side. The recommended dataset is used to implement the AI approach for online execution, reducing optimization process time. The learning process of the RFA is guided by the MFO optimization algorithm. The MFO technique defines the objective function using system information based on equal and unequal constraints, including the accessibility of renewable energy sources, power demand, and state of charge (SOC) of storage systems. Storage devices such as batteries stabilize the energy generated by renewable energy systems to maintain a constant, stable output power. The proposed model is implemented on the MATLAB/Simulink platform, and its execution is compared to previous approaches.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"21 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.8.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.8.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Power Flow Control of the Grid-Integrated Hybrid DG System using an ARFMF Optimization
A power flow control scheme for a grid-integrated Hybrid DG System (HDGS) is presented in this work, utilizing an advanced random forest algorithm combined with the moth-flame optimization (ARFMF) approach. The proposed control scheme combines the random forest algorithm (RFA) and moth-flame optimization algorithm (MFO) for consolidated execution. The random forest algorithm (RFA), an AI technique, is well-suited for nonlinear systems due to its accurate interpolation and extrapolation capabilities. It is an ensemble learning method that combines multiple decision trees to make predictions. The algorithm constructs a forest of decision trees and aggregates their predictions to produce the final output. The moth-flame optimization (MFO) process is a meta-heuristic optimization procedure inspired by the transverse orientation of moths in nature. It improves initial random solutions and converges to superior positions in the search area. Similarly, the MFO is effective in nonlinear systems as it accurately interpolates and extrapolates arbitrary information. In the proposed technique, the RFA performs the calculation process to determine precise control gains for the HDGS through online implementation based on power variation between the source side and the load side. The recommended dataset is used to implement the AI approach for online execution, reducing optimization process time. The learning process of the RFA is guided by the MFO optimization algorithm. The MFO technique defines the objective function using system information based on equal and unequal constraints, including the accessibility of renewable energy sources, power demand, and state of charge (SOC) of storage systems. Storage devices such as batteries stabilize the energy generated by renewable energy systems to maintain a constant, stable output power. The proposed model is implemented on the MATLAB/Simulink platform, and its execution is compared to previous approaches.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.