具有奇异灵敏度和Lotka-Volterra竞争动力学的两种趋化系统的稳定性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-01 DOI:10.3934/dcds.2023130
Halil ibrahim Kurt, Wenxian Shen
{"title":"具有奇异灵敏度和Lotka-Volterra竞争动力学的两种趋化系统的稳定性","authors":"Halil ibrahim Kurt, Wenxian Shen","doi":"10.3934/dcds.2023130","DOIUrl":null,"url":null,"abstract":"The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, $ \\begin{equation} \\begin{cases} u_t = \\Delta u-\\chi_1 \\nabla\\cdot (\\frac{u}{w} \\nabla w)+u(a_1-b_1u-c_1v) , \\quad &amp;x\\in \\Omega\\cr v_t = \\Delta v-\\chi_2 \\nabla\\cdot (\\frac{v}{w} \\nabla w)+v(a_2-b_2v-c_2u), \\quad &amp;x\\in \\Omega\\cr 0 = \\Delta w-\\mu w +\\nu u+ \\lambda v, \\quad &amp;x\\in \\Omega \\cr \\frac{\\partial u}{\\partial n} = \\frac{\\partial v}{\\partial n} = \\frac{\\partial w}{\\partial n} = 0, \\quad &amp;x\\in\\partial\\Omega, \\end{cases} \\end{equation}~~~~(1) $ where $ \\Omega \\subset \\mathbb{R}^N $ is a bounded smooth domain, and $ \\chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $) and $ \\mu, \\, \\nu, \\, \\lambda $ are positive constants. In [25], among others, we proved that for any given nonnegative initial data $ u_0, v_0\\in C^0(\\bar\\Omega) $ with $ u_0+v_0\\not \\equiv 0 $, (1) has a unique globally defined classical solution $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ with $ u(0, x;u_0, v_0) = u_0(x) $ and $ v(0, x;u_0, v_0) = v_0(x) $ in any space dimensional setting with any positive constants $ \\chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $) and $ \\mu, \\nu, \\lambda $. In this paper, we assume that the competition in (1) is weak in the sense that $ \\frac{c_1}{b_2}<\\frac{a_1}{a_2}, \\quad \\frac{c_2}{b_1}<\\frac{a_2}{a_1}. $ Then (1) has a unique positive constant solution $ (u^*, v^*, w^*) $, where $ u^* = \\frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \\quad v^* = \\frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \\quad w^* = \\frac{\\nu}{\\mu}u^*+\\frac{\\lambda}{\\mu} v^*. $ We obtain some explicit conditions on $ \\chi_1, \\chi_2 $ which ensure that the positive constant solution $ (u^*, v^*, w^*) $ is globally stable, that is, for any given nonnegative initial data $ u_0, v_0\\in C^0(\\bar\\Omega) $ with $ u_0\\not \\equiv 0 $ and $ v_0\\not \\equiv 0 $, $ \\lim\\limits_{t\\to\\infty}\\Big(\\|u(t, \\cdot;u_0, v_0)-u^*\\|_\\infty +\\|v(t, \\cdot;u_0, v_0)-v^*\\|_\\infty+\\|w(t, \\cdot;u_0, v_0)-w^*\\|_\\infty\\Big) = 0. $","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization in two-species chemotaxis systems with singular sensitivity and Lotka-Volterra competitive kinetics\",\"authors\":\"Halil ibrahim Kurt, Wenxian Shen\",\"doi\":\"10.3934/dcds.2023130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, $ \\\\begin{equation} \\\\begin{cases} u_t = \\\\Delta u-\\\\chi_1 \\\\nabla\\\\cdot (\\\\frac{u}{w} \\\\nabla w)+u(a_1-b_1u-c_1v) , \\\\quad &amp;x\\\\in \\\\Omega\\\\cr v_t = \\\\Delta v-\\\\chi_2 \\\\nabla\\\\cdot (\\\\frac{v}{w} \\\\nabla w)+v(a_2-b_2v-c_2u), \\\\quad &amp;x\\\\in \\\\Omega\\\\cr 0 = \\\\Delta w-\\\\mu w +\\\\nu u+ \\\\lambda v, \\\\quad &amp;x\\\\in \\\\Omega \\\\cr \\\\frac{\\\\partial u}{\\\\partial n} = \\\\frac{\\\\partial v}{\\\\partial n} = \\\\frac{\\\\partial w}{\\\\partial n} = 0, \\\\quad &amp;x\\\\in\\\\partial\\\\Omega, \\\\end{cases} \\\\end{equation}~~~~(1) $ where $ \\\\Omega \\\\subset \\\\mathbb{R}^N $ is a bounded smooth domain, and $ \\\\chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $) and $ \\\\mu, \\\\, \\\\nu, \\\\, \\\\lambda $ are positive constants. In [25], among others, we proved that for any given nonnegative initial data $ u_0, v_0\\\\in C^0(\\\\bar\\\\Omega) $ with $ u_0+v_0\\\\not \\\\equiv 0 $, (1) has a unique globally defined classical solution $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ with $ u(0, x;u_0, v_0) = u_0(x) $ and $ v(0, x;u_0, v_0) = v_0(x) $ in any space dimensional setting with any positive constants $ \\\\chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $) and $ \\\\mu, \\\\nu, \\\\lambda $. In this paper, we assume that the competition in (1) is weak in the sense that $ \\\\frac{c_1}{b_2}<\\\\frac{a_1}{a_2}, \\\\quad \\\\frac{c_2}{b_1}<\\\\frac{a_2}{a_1}. $ Then (1) has a unique positive constant solution $ (u^*, v^*, w^*) $, where $ u^* = \\\\frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \\\\quad v^* = \\\\frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \\\\quad w^* = \\\\frac{\\\\nu}{\\\\mu}u^*+\\\\frac{\\\\lambda}{\\\\mu} v^*. $ We obtain some explicit conditions on $ \\\\chi_1, \\\\chi_2 $ which ensure that the positive constant solution $ (u^*, v^*, w^*) $ is globally stable, that is, for any given nonnegative initial data $ u_0, v_0\\\\in C^0(\\\\bar\\\\Omega) $ with $ u_0\\\\not \\\\equiv 0 $ and $ v_0\\\\not \\\\equiv 0 $, $ \\\\lim\\\\limits_{t\\\\to\\\\infty}\\\\Big(\\\\|u(t, \\\\cdot;u_0, v_0)-u^*\\\\|_\\\\infty +\\\\|v(t, \\\\cdot;u_0, v_0)-v^*\\\\|_\\\\infty+\\\\|w(t, \\\\cdot;u_0, v_0)-w^*\\\\|_\\\\infty\\\\Big) = 0. $\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023130\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2023130","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有Lotka-Volterra竞争动力学的奇异灵敏度抛物-抛物-椭圆趋化系统的稳定性问题。 $ \begin{equation} \begin{cases} u_t = \Delta u-\chi_1 \nabla\cdot (\frac{u}{w} \nabla w)+u(a_1-b_1u-c_1v) , \quad &x\in \Omega\cr v_t = \Delta v-\chi_2 \nabla\cdot (\frac{v}{w} \nabla w)+v(a_2-b_2v-c_2u), \quad &x\in \Omega\cr 0 = \Delta w-\mu w +\nu u+ \lambda v, \quad &x\in \Omega \cr \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial w}{\partial n} = 0, \quad &x\in\partial\Omega, \end{cases} \end{equation}~~~~(1) $ 在哪里 $ \Omega \subset \mathbb{R}^N $ 是有界光滑域,那么 $ \chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $)及 $ \mu, \, \nu, \, \lambda $ 都是正常数。在[25]等文献中,我们证明了对于任意给定的非负初始数据 $ u_0, v_0\in C^0(\bar\Omega) $ 有 $ u_0+v_0\not \equiv 0 $,(1)具有唯一的全局定义经典解 $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ 有 $ u(0, x;u_0, v_0) = u_0(x) $ 和 $ v(0, x;u_0, v_0) = v_0(x) $ 在任意的空间维度中,任意的正常数 $ \chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $)及 $ \mu, \nu, \lambda $. 在本文中,我们假设(1)中的竞争是弱的,即 $ \frac{c_1}{b_2}<\frac{a_1}{a_2}, \quad \frac{c_2}{b_1}<\frac{a_2}{a_1}. $ 则(1)有唯一正常数解 $ (u^*, v^*, w^*) $,其中 $ u^* = \frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \quad v^* = \frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \quad w^* = \frac{\nu}{\mu}u^*+\frac{\lambda}{\mu} v^*. $ 得到了若干显式条件 $ \chi_1, \chi_2 $ 哪一个能保证正常数解 $ (u^*, v^*, w^*) $ 是否全局稳定,即对于任何给定的非负初始数据 $ u_0, v_0\in C^0(\bar\Omega) $ 有 $ u_0\not \equiv 0 $ 和 $ v_0\not \equiv 0 $, $ \lim\limits_{t\to\infty}\Big(\|u(t, \cdot;u_0, v_0)-u^*\|_\infty +\|v(t, \cdot;u_0, v_0)-v^*\|_\infty+\|w(t, \cdot;u_0, v_0)-w^*\|_\infty\Big) = 0. $
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilization in two-species chemotaxis systems with singular sensitivity and Lotka-Volterra competitive kinetics
The current paper is concerned with the stabilization in the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, $ \begin{equation} \begin{cases} u_t = \Delta u-\chi_1 \nabla\cdot (\frac{u}{w} \nabla w)+u(a_1-b_1u-c_1v) , \quad &x\in \Omega\cr v_t = \Delta v-\chi_2 \nabla\cdot (\frac{v}{w} \nabla w)+v(a_2-b_2v-c_2u), \quad &x\in \Omega\cr 0 = \Delta w-\mu w +\nu u+ \lambda v, \quad &x\in \Omega \cr \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial w}{\partial n} = 0, \quad &x\in\partial\Omega, \end{cases} \end{equation}~~~~(1) $ where $ \Omega \subset \mathbb{R}^N $ is a bounded smooth domain, and $ \chi_i $, $ a_i $, $ b_i $, $ c_i $ ($ i = 1, 2 $) and $ \mu, \, \nu, \, \lambda $ are positive constants. In [25], among others, we proved that for any given nonnegative initial data $ u_0, v_0\in C^0(\bar\Omega) $ with $ u_0+v_0\not \equiv 0 $, (1) has a unique globally defined classical solution $ (u(t, x;u_0, v_0), v(t, x;u_0, v_0), w(t, x;u_0, v_0)) $ with $ u(0, x;u_0, v_0) = u_0(x) $ and $ v(0, x;u_0, v_0) = v_0(x) $ in any space dimensional setting with any positive constants $ \chi_i, a_i, b_i, c_i $ ($ i = 1, 2 $) and $ \mu, \nu, \lambda $. In this paper, we assume that the competition in (1) is weak in the sense that $ \frac{c_1}{b_2}<\frac{a_1}{a_2}, \quad \frac{c_2}{b_1}<\frac{a_2}{a_1}. $ Then (1) has a unique positive constant solution $ (u^*, v^*, w^*) $, where $ u^* = \frac{a_1b_2-c_1a_2}{b_1b_2-c_1c_2}, \quad v^* = \frac{b_1a_2-a_1c_2}{b_1b_2-c_1c_2}, \quad w^* = \frac{\nu}{\mu}u^*+\frac{\lambda}{\mu} v^*. $ We obtain some explicit conditions on $ \chi_1, \chi_2 $ which ensure that the positive constant solution $ (u^*, v^*, w^*) $ is globally stable, that is, for any given nonnegative initial data $ u_0, v_0\in C^0(\bar\Omega) $ with $ u_0\not \equiv 0 $ and $ v_0\not \equiv 0 $, $ \lim\limits_{t\to\infty}\Big(\|u(t, \cdot;u_0, v_0)-u^*\|_\infty +\|v(t, \cdot;u_0, v_0)-v^*\|_\infty+\|w(t, \cdot;u_0, v_0)-w^*\|_\infty\Big) = 0. $
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1