基于重力深度卷积堆叠核极限学习的人脸识别分类

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-10-24 DOI:10.32985/ijeces.14.8.9
Gowri A, J. Abdul Samath
{"title":"基于重力深度卷积堆叠核极限学习的人脸识别分类","authors":"Gowri A, J. Abdul Samath","doi":"10.32985/ijeces.14.8.9","DOIUrl":null,"url":null,"abstract":"In recent times, researchers have designed several deep learning (DL) algorithms and specifically face recognition (FR) made an extensive crossover. Deep Face Recognition systems took advantage of the hierarchical framework of the DL algorithms to learn discriminative face characterization. However, when handling severe occlusions in a face, the execution of present-day methods reduces appreciably. Several prevailing works regard that, when face recognition is taken into consideration, affinity materializes to be a pivotal recognition feature. However, the rate of affinity changes when the face image for recognition is found to be illuminated, and occluded, with changes in the age of the subject. Motivated by these issues, in this work a novel method called Gravitational Deep Convoluted Stacked Kernel Extreme Learning-based (GDC-SKEL) classification for face recognition is proposed for human face recognition problems in frontal views with varying age, illumination, and occlusion. First, with the face images provided as input, Gravitational Center Loss-based Face Alignment model is proposed to minimize the intra-class difference, which can overcome the influence of occlusion in face images. Second, Deep Convoluted Tikhonov Regularization-based Facial Region Feature extraction is applied to the occlusion-removed face images. Here, by employing the Convoluted Tikhonov Regularization function, salient features are said to be extracted with an age-invariant representation. Finally, Stacked Kernel Extreme Learning-based Classification is designed. The extracted features are given to the Stacked Kernel Extreme Learning-based Classification and to identify testing samples Stacked Kernel is utilized. The performance of GDC-SKEL is evaluated on Cross-Age Celebrity Dataset. Experimental results are compared with other state-of-the-art classifiers in terms of face recognition accuracy, face recognition time, PSNR, and False Positive Rate which shows the effectiveness of the proposed GDC-SKEL classifier.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"2 2","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational Deep Convoluted Stacked Kernel Extreme Learning Based Classification for Face Recognition\",\"authors\":\"Gowri A, J. Abdul Samath\",\"doi\":\"10.32985/ijeces.14.8.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent times, researchers have designed several deep learning (DL) algorithms and specifically face recognition (FR) made an extensive crossover. Deep Face Recognition systems took advantage of the hierarchical framework of the DL algorithms to learn discriminative face characterization. However, when handling severe occlusions in a face, the execution of present-day methods reduces appreciably. Several prevailing works regard that, when face recognition is taken into consideration, affinity materializes to be a pivotal recognition feature. However, the rate of affinity changes when the face image for recognition is found to be illuminated, and occluded, with changes in the age of the subject. Motivated by these issues, in this work a novel method called Gravitational Deep Convoluted Stacked Kernel Extreme Learning-based (GDC-SKEL) classification for face recognition is proposed for human face recognition problems in frontal views with varying age, illumination, and occlusion. First, with the face images provided as input, Gravitational Center Loss-based Face Alignment model is proposed to minimize the intra-class difference, which can overcome the influence of occlusion in face images. Second, Deep Convoluted Tikhonov Regularization-based Facial Region Feature extraction is applied to the occlusion-removed face images. Here, by employing the Convoluted Tikhonov Regularization function, salient features are said to be extracted with an age-invariant representation. Finally, Stacked Kernel Extreme Learning-based Classification is designed. The extracted features are given to the Stacked Kernel Extreme Learning-based Classification and to identify testing samples Stacked Kernel is utilized. The performance of GDC-SKEL is evaluated on Cross-Age Celebrity Dataset. Experimental results are compared with other state-of-the-art classifiers in terms of face recognition accuracy, face recognition time, PSNR, and False Positive Rate which shows the effectiveness of the proposed GDC-SKEL classifier.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"2 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.8.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.8.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,研究人员设计了几种深度学习(DL)算法,特别是人脸识别(FR)算法进行了广泛的交叉。深度人脸识别系统利用深度学习算法的层次框架来学习判别人脸特征。然而,当处理面部严重的咬合时,当前方法的执行明显减少。一些流行的研究认为,当考虑人脸识别时,亲和力是一个关键的识别特征。然而,当被识别的人脸图像被照亮或遮挡时,亲和性的速率随着被识别对象年龄的变化而变化。基于这些问题,本研究提出了一种基于重力深度卷积堆叠核极限学习(gdc - skl)的人脸识别新方法,用于不同年龄、光照和遮挡的正面视图下的人脸识别问题。首先,以提供的人脸图像为输入,提出了基于重力中心损失的人脸对齐模型,最小化类内差异,克服了遮挡对人脸图像的影响;其次,将基于深度卷积Tikhonov正则化的人脸区域特征提取应用于去遮挡后的人脸图像。在这里,通过使用卷积Tikhonov正则化函数,可以用年龄不变表示提取显著特征。最后,设计了基于堆叠核极限学习的分类算法。将提取的特征交给基于堆叠核极限学习的分类算法,并利用堆叠核对测试样本进行识别。在跨年龄名人数据集上对GDC-SKEL的性能进行了评估。在人脸识别准确率、人脸识别时间、PSNR和误报率等方面,将实验结果与其他最先进的分类器进行了比较,验证了GDC-SKEL分类器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gravitational Deep Convoluted Stacked Kernel Extreme Learning Based Classification for Face Recognition
In recent times, researchers have designed several deep learning (DL) algorithms and specifically face recognition (FR) made an extensive crossover. Deep Face Recognition systems took advantage of the hierarchical framework of the DL algorithms to learn discriminative face characterization. However, when handling severe occlusions in a face, the execution of present-day methods reduces appreciably. Several prevailing works regard that, when face recognition is taken into consideration, affinity materializes to be a pivotal recognition feature. However, the rate of affinity changes when the face image for recognition is found to be illuminated, and occluded, with changes in the age of the subject. Motivated by these issues, in this work a novel method called Gravitational Deep Convoluted Stacked Kernel Extreme Learning-based (GDC-SKEL) classification for face recognition is proposed for human face recognition problems in frontal views with varying age, illumination, and occlusion. First, with the face images provided as input, Gravitational Center Loss-based Face Alignment model is proposed to minimize the intra-class difference, which can overcome the influence of occlusion in face images. Second, Deep Convoluted Tikhonov Regularization-based Facial Region Feature extraction is applied to the occlusion-removed face images. Here, by employing the Convoluted Tikhonov Regularization function, salient features are said to be extracted with an age-invariant representation. Finally, Stacked Kernel Extreme Learning-based Classification is designed. The extracted features are given to the Stacked Kernel Extreme Learning-based Classification and to identify testing samples Stacked Kernel is utilized. The performance of GDC-SKEL is evaluated on Cross-Age Celebrity Dataset. Experimental results are compared with other state-of-the-art classifiers in terms of face recognition accuracy, face recognition time, PSNR, and False Positive Rate which shows the effectiveness of the proposed GDC-SKEL classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1