{"title":"一种基于视频的人体活动识别层次框架","authors":"Milind Kamble, Rajankumar S. Bichkar","doi":"10.32985/ijeces.14.8.6","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition (HAR) is an important field with diverse applications. However, video-based HAR is challenging because of various factors, such as noise, multiple people, and obscured body parts. Moreover, it is difficult to identify similar activities within and across classes. This study presents a novel approach that utilizes body region relationships as features and a two-level hierarchical model for classification to address these challenges. The proposed system uses a Hidden Markov Model (HMM) at the first level to model human activity, and similar activities are then grouped and classified using a Support Vector Machine (SVM) at the second level. The performance of the proposed system was evaluated on four datasets, with superior results observed for the KTH and Basic Kitchen Activity (BKA) datasets. Promising results were obtained for the HMDB-51 and UCF101 datasets. Improvements of 25%, 25%, 4%, 22%, 24%, and 30% in accuracy, recall, specificity, Precision, F1-score, and MCC, respectively, are achieved for the KTH dataset. On the BKA dataset, the second level of the system shows improvements of 8.6%, 8.6%, 0.85%, 8.2%, 8.4%, and 9.5% for the same metrics compared to the first level. These findings demonstrate the potential of the proposed two-level hierarchical system for human activity recognition applications.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"60 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hierarchical Framework for Video-Based Human Activity Recognition Using Body Part Interactions\",\"authors\":\"Milind Kamble, Rajankumar S. Bichkar\",\"doi\":\"10.32985/ijeces.14.8.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Activity Recognition (HAR) is an important field with diverse applications. However, video-based HAR is challenging because of various factors, such as noise, multiple people, and obscured body parts. Moreover, it is difficult to identify similar activities within and across classes. This study presents a novel approach that utilizes body region relationships as features and a two-level hierarchical model for classification to address these challenges. The proposed system uses a Hidden Markov Model (HMM) at the first level to model human activity, and similar activities are then grouped and classified using a Support Vector Machine (SVM) at the second level. The performance of the proposed system was evaluated on four datasets, with superior results observed for the KTH and Basic Kitchen Activity (BKA) datasets. Promising results were obtained for the HMDB-51 and UCF101 datasets. Improvements of 25%, 25%, 4%, 22%, 24%, and 30% in accuracy, recall, specificity, Precision, F1-score, and MCC, respectively, are achieved for the KTH dataset. On the BKA dataset, the second level of the system shows improvements of 8.6%, 8.6%, 0.85%, 8.2%, 8.4%, and 9.5% for the same metrics compared to the first level. These findings demonstrate the potential of the proposed two-level hierarchical system for human activity recognition applications.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.8.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.8.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Hierarchical Framework for Video-Based Human Activity Recognition Using Body Part Interactions
Human Activity Recognition (HAR) is an important field with diverse applications. However, video-based HAR is challenging because of various factors, such as noise, multiple people, and obscured body parts. Moreover, it is difficult to identify similar activities within and across classes. This study presents a novel approach that utilizes body region relationships as features and a two-level hierarchical model for classification to address these challenges. The proposed system uses a Hidden Markov Model (HMM) at the first level to model human activity, and similar activities are then grouped and classified using a Support Vector Machine (SVM) at the second level. The performance of the proposed system was evaluated on four datasets, with superior results observed for the KTH and Basic Kitchen Activity (BKA) datasets. Promising results were obtained for the HMDB-51 and UCF101 datasets. Improvements of 25%, 25%, 4%, 22%, 24%, and 30% in accuracy, recall, specificity, Precision, F1-score, and MCC, respectively, are achieved for the KTH dataset. On the BKA dataset, the second level of the system shows improvements of 8.6%, 8.6%, 0.85%, 8.2%, 8.4%, and 9.5% for the same metrics compared to the first level. These findings demonstrate the potential of the proposed two-level hierarchical system for human activity recognition applications.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.