使用支持向量机参数优化器对实现校长功能定位的时间长度进行建模分类

ANDY SUPRIYADI, MUHAMMAD ASRI SAFI'IE
{"title":"使用支持向量机参数优化器对实现校长功能定位的时间长度进行建模分类","authors":"ANDY SUPRIYADI, MUHAMMAD ASRI SAFI'IE","doi":"10.26760/elkomika.v11i4.879","DOIUrl":null,"url":null,"abstract":"ABSTRAKPemenuhan dosen dengan jabatan fungsional lektor kepala dan guru besar menjadi sangat penting dalam memperoleh akreditasi unggul bagi perguruan tinggi. Salah satu upaya pemenuhan dengan melakukan klasifikasi dosen dari sisi lama waktu pencapaian jabatan fungsional lektor kepala dari lektor pada Universitas Sebelas Maret dibagi menjadi tiga, yaitu cepat, sedang, dan lambat. Variabel yang digunakan dalam klasifikasi antara lain usia, tempat studi, lama studi, international research, sertifikasi dosen, jabatan structural dan bidang ilmu dari staf pengajar. Penelitian ini melakukan klasifikasi menggunakan algoritma Support Vector Machine dengan dataset sejumlah 520 data. K-fold Cross Validation digunakan untuk membagi dataset menjadi data latih dan data uji, dengan k=5. Hasil pengujian model diperoleh rata-rata akurasi terbaik menggunakan Support Vector Machine sebesar 86.39% dengan Optimizer Parameter sedangkan rata-rata akurasi Support Vector Machine tanpa parameter sebesar 80.92%.Kata kunci: klasifikasi, jabatan fungsional, Support Vector Machine, K-fold Cross Validation ABSTRACTThe fulfillment of lectures on achieving associate professor and professor position holds tremendous significance for gaining excellent institution Accreditation Predicate. Sebelas Maret Univesity took measures to achieve this objective by carrying out thorough the classification on the length of achieving associate professor from instructor position and split into 3 grades namely fast, medium and slow. The features used for conducting the classification are age, place of study, the length of the study, the amount of international publication, lecturer certification, lecturer’s structural position and field of study. In this study, the Support Vector Machine algorithm was utilized to classify a dataset consisting of 520 data. To ensure reliable results, K-fold Cross Validation was applied to divide the dataset into training and test data, with k=5. The evaluation of the model's performance revealed that the Support Vector Machine achieved an impressive average accuracy of 86.39%. In contrast, the average accuracy of the Support Vector Machine to 80.92% without parameters.Keywords: classification, associate lectures position, support vector machine, K-fold Cross Validation","PeriodicalId":31222,"journal":{"name":"Jurnal Elkomika","volume":"13 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pemodelan Klasifikasi Lama Waktu Pencapaian Jabatan Fungsional Lektor Kepala menggunakan Optimizer Parameter Support Vector Machine\",\"authors\":\"ANDY SUPRIYADI, MUHAMMAD ASRI SAFI'IE\",\"doi\":\"10.26760/elkomika.v11i4.879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRAKPemenuhan dosen dengan jabatan fungsional lektor kepala dan guru besar menjadi sangat penting dalam memperoleh akreditasi unggul bagi perguruan tinggi. Salah satu upaya pemenuhan dengan melakukan klasifikasi dosen dari sisi lama waktu pencapaian jabatan fungsional lektor kepala dari lektor pada Universitas Sebelas Maret dibagi menjadi tiga, yaitu cepat, sedang, dan lambat. Variabel yang digunakan dalam klasifikasi antara lain usia, tempat studi, lama studi, international research, sertifikasi dosen, jabatan structural dan bidang ilmu dari staf pengajar. Penelitian ini melakukan klasifikasi menggunakan algoritma Support Vector Machine dengan dataset sejumlah 520 data. K-fold Cross Validation digunakan untuk membagi dataset menjadi data latih dan data uji, dengan k=5. Hasil pengujian model diperoleh rata-rata akurasi terbaik menggunakan Support Vector Machine sebesar 86.39% dengan Optimizer Parameter sedangkan rata-rata akurasi Support Vector Machine tanpa parameter sebesar 80.92%.Kata kunci: klasifikasi, jabatan fungsional, Support Vector Machine, K-fold Cross Validation ABSTRACTThe fulfillment of lectures on achieving associate professor and professor position holds tremendous significance for gaining excellent institution Accreditation Predicate. Sebelas Maret Univesity took measures to achieve this objective by carrying out thorough the classification on the length of achieving associate professor from instructor position and split into 3 grades namely fast, medium and slow. The features used for conducting the classification are age, place of study, the length of the study, the amount of international publication, lecturer certification, lecturer’s structural position and field of study. In this study, the Support Vector Machine algorithm was utilized to classify a dataset consisting of 520 data. To ensure reliable results, K-fold Cross Validation was applied to divide the dataset into training and test data, with k=5. The evaluation of the model's performance revealed that the Support Vector Machine achieved an impressive average accuracy of 86.39%. In contrast, the average accuracy of the Support Vector Machine to 80.92% without parameters.Keywords: classification, associate lectures position, support vector machine, K-fold Cross Validation\",\"PeriodicalId\":31222,\"journal\":{\"name\":\"Jurnal Elkomika\",\"volume\":\"13 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Elkomika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26760/elkomika.v11i4.879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Elkomika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/elkomika.v11i4.879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

教授的职能教授、副教授和特级教师的成就对于获得高质量的大学认证变得非常重要。3月11日大学助理教授职能副教授职能主任职能主任职能副教授职能主任职能主任职能主任职能主任职能教授职能的长期努力之一,将其分为快、中、慢三种。分类中使用的变量包括年龄、研究地点、长期研究、国际研究、证书、教师、结构和科学领域。该研究使用一个带有520数据的数据支持算法进行分类。k -折叠交叉验证用来将数据分成数据进行培训和测试,k=5。模型测试的平均准确率是在86.39%的正矢量参数下进行的,而平均的纯支撑矢量机器没有参数为80.92%。关键字:分类、职能、支持向量、K-fold Machine、K-fold Cross prostractthe lectures3月11日大学大学对实现这一目标的方法提出了建议,将助理教授的简历分割成三个快速、中等和缓慢的成绩。研究的背景是研究的时代、研究的终点、研究的终点、国际出版的配种、演讲证书、演讲的结构和现场研究。In this study,支持向量机算法是utilized classify百万数据集consisting of公元前520年数据。要主意吗可靠results, K-fold Cross Validation是应用到分割数据集》进入训练和测试数据里,用k = 5。调查员》的演出所揭示的支持向量机模型achieved印象深刻的平均86的评比,39%。在另一位,平均评比》92%没有parameters支持向量机到80。安装:classification,副lectures位置,支持向量机,K-fold Cross Validation
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pemodelan Klasifikasi Lama Waktu Pencapaian Jabatan Fungsional Lektor Kepala menggunakan Optimizer Parameter Support Vector Machine
ABSTRAKPemenuhan dosen dengan jabatan fungsional lektor kepala dan guru besar menjadi sangat penting dalam memperoleh akreditasi unggul bagi perguruan tinggi. Salah satu upaya pemenuhan dengan melakukan klasifikasi dosen dari sisi lama waktu pencapaian jabatan fungsional lektor kepala dari lektor pada Universitas Sebelas Maret dibagi menjadi tiga, yaitu cepat, sedang, dan lambat. Variabel yang digunakan dalam klasifikasi antara lain usia, tempat studi, lama studi, international research, sertifikasi dosen, jabatan structural dan bidang ilmu dari staf pengajar. Penelitian ini melakukan klasifikasi menggunakan algoritma Support Vector Machine dengan dataset sejumlah 520 data. K-fold Cross Validation digunakan untuk membagi dataset menjadi data latih dan data uji, dengan k=5. Hasil pengujian model diperoleh rata-rata akurasi terbaik menggunakan Support Vector Machine sebesar 86.39% dengan Optimizer Parameter sedangkan rata-rata akurasi Support Vector Machine tanpa parameter sebesar 80.92%.Kata kunci: klasifikasi, jabatan fungsional, Support Vector Machine, K-fold Cross Validation ABSTRACTThe fulfillment of lectures on achieving associate professor and professor position holds tremendous significance for gaining excellent institution Accreditation Predicate. Sebelas Maret Univesity took measures to achieve this objective by carrying out thorough the classification on the length of achieving associate professor from instructor position and split into 3 grades namely fast, medium and slow. The features used for conducting the classification are age, place of study, the length of the study, the amount of international publication, lecturer certification, lecturer’s structural position and field of study. In this study, the Support Vector Machine algorithm was utilized to classify a dataset consisting of 520 data. To ensure reliable results, K-fold Cross Validation was applied to divide the dataset into training and test data, with k=5. The evaluation of the model's performance revealed that the Support Vector Machine achieved an impressive average accuracy of 86.39%. In contrast, the average accuracy of the Support Vector Machine to 80.92% without parameters.Keywords: classification, associate lectures position, support vector machine, K-fold Cross Validation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
72
审稿时长
12 weeks
期刊最新文献
Image Processing-based Automatic Printed Circuit Board Printing Machine Penerapan Filter Kalman untuk Estimasi Jarak dan Posisi pada Lokalisasi Outdoor berbasis RSSI dengan Komunikasi LoRa Optimasi Dielektrika Isolator Polimer Silicone Rubber menggunakan Bahan Pengisi Limbah Coal Fly Ash Antena Mikrostrip Multilayer Parasitik pada Frekuensi C Band Radar Cuaca Rancang Bangun Mesin Rotary Dryer Gabah
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1