FAUZAN AWWAL MUKHRODI, IKE FIBRIANI, KHAIRUL ANAM, ALI RIZAL CHAIDIR
{"title":"基于3D ResNet-18的亲属验证系统使用Jetson Nano","authors":"FAUZAN AWWAL MUKHRODI, IKE FIBRIANI, KHAIRUL ANAM, ALI RIZAL CHAIDIR","doi":"10.26760/elkomika.v11i4.919","DOIUrl":null,"url":null,"abstract":"ABSTRAKVerifikasi kekerabatan berbasis citra wajah merupakan salah satu penerapan sistem Artificial Intelligence yang berguna dalam kehidupan, misalnya untuk penyelidikan kriminal, analisis silsilah, dan lainnya. Perancangan sistem pengenalan wajah pada verifikasi kekerabatan dapat dilakukan menggunakan salah satu algoritma deep learning yaitu metode Convolutional Neural Network. Penelitian ini dilakukan dengan tujuan untuk mengetahui kinerja dari 3D ResNet-18 pada verifikasi kekerabatan berdasarkan sistem pengenalan wajah dan mengetahui kinerja 3D ResNet-18 saat menggunakan embedded system secara real time. Hasil penelitian kinerja ResNet-18 tanpa embedded system memperoleh nilai akurasi training sebesar 0,9771 menggunakan optimizer RMSprop dengan epoch 30 dan batch size 25. Pada pengujian kinerja real time ResNet-18, optimizer SGD berhasil pada ukuran batch size 10, 15, dan 25. Namun untuk pengujian pada perangkat Jetson Nano, optimizer RMSprop gagal akibat ukuran model yang terlalu besar.Kata kunci: embedded sistem, CNN, 3D Resnet18, RMSprop, kekerabatan ABSTRACTFace-based kinship verification is one of the applications of artificial intelligence systems that are useful in various aspects of life, such as criminal investigations, pedigree analysis, and more. The design of a face recognition system for kinship verification can be done using one of the deep learning algorithms, namely the convolutional neural network method. This research was conducted with the aim of determining the performance of 3D ResNet-18 in kinship verification based on face recognition systems and assessing the performance of 3D ResNet-18 when using an embedded system in real time. The results of the ResNet-18 performance research without an embedded system obtained a training accuracy of 0.9771 using the RMSprop optimizer with 30 epochs and a batch size of 25. In real-time performance testing of ResNet-18, the SGD optimizer succeeded with batch sizes of 10, 15, and 25. However, during testing on the Jetson Nano device, the RMSprop optimizer failed due to the size of the model being too large.Keywords: Embedded System, CNN, 3D Resnet-18, RMSprop, Kinship","PeriodicalId":31222,"journal":{"name":"Jurnal Elkomika","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Verifikasi Kekerabatan berbasis 3D ResNet-18 menggunakan Jetson Nano\",\"authors\":\"FAUZAN AWWAL MUKHRODI, IKE FIBRIANI, KHAIRUL ANAM, ALI RIZAL CHAIDIR\",\"doi\":\"10.26760/elkomika.v11i4.919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRAKVerifikasi kekerabatan berbasis citra wajah merupakan salah satu penerapan sistem Artificial Intelligence yang berguna dalam kehidupan, misalnya untuk penyelidikan kriminal, analisis silsilah, dan lainnya. Perancangan sistem pengenalan wajah pada verifikasi kekerabatan dapat dilakukan menggunakan salah satu algoritma deep learning yaitu metode Convolutional Neural Network. Penelitian ini dilakukan dengan tujuan untuk mengetahui kinerja dari 3D ResNet-18 pada verifikasi kekerabatan berdasarkan sistem pengenalan wajah dan mengetahui kinerja 3D ResNet-18 saat menggunakan embedded system secara real time. Hasil penelitian kinerja ResNet-18 tanpa embedded system memperoleh nilai akurasi training sebesar 0,9771 menggunakan optimizer RMSprop dengan epoch 30 dan batch size 25. Pada pengujian kinerja real time ResNet-18, optimizer SGD berhasil pada ukuran batch size 10, 15, dan 25. Namun untuk pengujian pada perangkat Jetson Nano, optimizer RMSprop gagal akibat ukuran model yang terlalu besar.Kata kunci: embedded sistem, CNN, 3D Resnet18, RMSprop, kekerabatan ABSTRACTFace-based kinship verification is one of the applications of artificial intelligence systems that are useful in various aspects of life, such as criminal investigations, pedigree analysis, and more. The design of a face recognition system for kinship verification can be done using one of the deep learning algorithms, namely the convolutional neural network method. This research was conducted with the aim of determining the performance of 3D ResNet-18 in kinship verification based on face recognition systems and assessing the performance of 3D ResNet-18 when using an embedded system in real time. The results of the ResNet-18 performance research without an embedded system obtained a training accuracy of 0.9771 using the RMSprop optimizer with 30 epochs and a batch size of 25. In real-time performance testing of ResNet-18, the SGD optimizer succeeded with batch sizes of 10, 15, and 25. However, during testing on the Jetson Nano device, the RMSprop optimizer failed due to the size of the model being too large.Keywords: Embedded System, CNN, 3D Resnet-18, RMSprop, Kinship\",\"PeriodicalId\":31222,\"journal\":{\"name\":\"Jurnal Elkomika\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Elkomika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26760/elkomika.v11i4.919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Elkomika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/elkomika.v11i4.919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基于面部图像的亲属关系验证是生活中重要的人工智能系统的应用之一,如刑事调查、家谱分析等。面部识别系统设计的硬度验证可以使用深度学习算法之一,即对位神经网络方法。本研究的目的是在基于面部识别系统的3D ResNet-18的硬度验证上了解面部识别系统的性能,并在实时使用嵌入式系统时了解ResNet-18的性能。研究结果,在没有嵌合系统的情况下,培训系统的准确性为0.9771,使用epoch 30和批号25的optimizer RMSprop获得0.9771。在real time ResNet-18性能测试中,optimizer SGD在大小批次10、15和25中都取得了成功。然而,对于Jetson Nano设备的测试,RMSprop光学设备的失败是由于模型尺寸过大。关键字:嵌入系统,CNN, 3D Resnet18, RMSprop,抽象性亲属关系验证是手段中有用的各种手段之一可以使用深度学习算法之一进行面部识别系统,namely神经通路网络方法。这项研究是由基于面部识别系统和评估的具有决定性的3D再现的意图进行的。再生18个表现研究的结果显示,使用30个epochs和25个批次的均衡器计算了0.9771次不嵌合系统的评分。在再生18号的实时性能测试中,SGD光学公司用第10、15和25批材料取得了成功。However,在测试Jetson纳米装置时,嵌入系统,CNN, 3D Resnet-18, RMSprop, Kinship
Sistem Verifikasi Kekerabatan berbasis 3D ResNet-18 menggunakan Jetson Nano
ABSTRAKVerifikasi kekerabatan berbasis citra wajah merupakan salah satu penerapan sistem Artificial Intelligence yang berguna dalam kehidupan, misalnya untuk penyelidikan kriminal, analisis silsilah, dan lainnya. Perancangan sistem pengenalan wajah pada verifikasi kekerabatan dapat dilakukan menggunakan salah satu algoritma deep learning yaitu metode Convolutional Neural Network. Penelitian ini dilakukan dengan tujuan untuk mengetahui kinerja dari 3D ResNet-18 pada verifikasi kekerabatan berdasarkan sistem pengenalan wajah dan mengetahui kinerja 3D ResNet-18 saat menggunakan embedded system secara real time. Hasil penelitian kinerja ResNet-18 tanpa embedded system memperoleh nilai akurasi training sebesar 0,9771 menggunakan optimizer RMSprop dengan epoch 30 dan batch size 25. Pada pengujian kinerja real time ResNet-18, optimizer SGD berhasil pada ukuran batch size 10, 15, dan 25. Namun untuk pengujian pada perangkat Jetson Nano, optimizer RMSprop gagal akibat ukuran model yang terlalu besar.Kata kunci: embedded sistem, CNN, 3D Resnet18, RMSprop, kekerabatan ABSTRACTFace-based kinship verification is one of the applications of artificial intelligence systems that are useful in various aspects of life, such as criminal investigations, pedigree analysis, and more. The design of a face recognition system for kinship verification can be done using one of the deep learning algorithms, namely the convolutional neural network method. This research was conducted with the aim of determining the performance of 3D ResNet-18 in kinship verification based on face recognition systems and assessing the performance of 3D ResNet-18 when using an embedded system in real time. The results of the ResNet-18 performance research without an embedded system obtained a training accuracy of 0.9771 using the RMSprop optimizer with 30 epochs and a batch size of 25. In real-time performance testing of ResNet-18, the SGD optimizer succeeded with batch sizes of 10, 15, and 25. However, during testing on the Jetson Nano device, the RMSprop optimizer failed due to the size of the model being too large.Keywords: Embedded System, CNN, 3D Resnet-18, RMSprop, Kinship