Nguyen Dang Co, Bui Dai Phat, Phan Van Khai, Tran Quang Dat, Ho Thi Anh, Nguyen Tran Ha, Le Viet Cuong, Nguyen Huy Tiep, Nguyen Thi Minh Hong, Dang Duc Dung, Ngo Duc Quan, Tran Mau Danh, Phan The Long, Pham Duc Thang, Bui Dinh Tu
{"title":"新型Bi<sub>1/2</sub>(Na<sub>0.8</sub>K<sub>0.2</sub>)<sub> TiO< 1/2</sub>TiO< 3</sub>O<sub>4</sub>;复合","authors":"Nguyen Dang Co, Bui Dai Phat, Phan Van Khai, Tran Quang Dat, Ho Thi Anh, Nguyen Tran Ha, Le Viet Cuong, Nguyen Huy Tiep, Nguyen Thi Minh Hong, Dang Duc Dung, Ngo Duc Quan, Tran Mau Danh, Phan The Long, Pham Duc Thang, Bui Dinh Tu","doi":"10.2320/matertrans.mt-mg2022026","DOIUrl":null,"url":null,"abstract":"The combination of two dielectric-magnetic components in the same composite has been shown to significantly improve the effectiveness of electromagnetic (EM) shielding and microwave absorption (MWA) because they have both a combination of high dielectric and magnetic losses and good impedance matching. The novel Bi1/2(Na0.8K0.2)1/2TiO3/Fe3O4 (BNKT/Fe3O4) composite has been successfully synthesized by a two-step method with wide effective absorption bandwidth (EAB = 16 GHz) in the high-frequency (2–18 GHz). It was evident that the MWA efficiency of the BNKT/Fe3O4 composite has been significantly improved compared with pure Bi1/2(Na0.8K0.2)1/2TiO3 or Fe3O4 materials. In addition, the BNKT/Fe3O4 composite could achieve reflection loss (RL = −39.41 dB, ∼99.99% at 10.16 GHz) with a sample thickness optimal (d = 4.7 mm). This work shows that the novel BNKT/Fe3O4 composite has excellent MWA properties, all contributing to a potential candidate in the electromagnetic wave absorption and shielding fields.","PeriodicalId":18402,"journal":{"name":"Materials Transactions","volume":"12 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Microwave Absorption Properties of Novel Bi<sub>1/2</sub>(Na<sub>0.8</sub>K<sub>0.2</sub>)<sub>1/2</sub>TiO<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> Composite\",\"authors\":\"Nguyen Dang Co, Bui Dai Phat, Phan Van Khai, Tran Quang Dat, Ho Thi Anh, Nguyen Tran Ha, Le Viet Cuong, Nguyen Huy Tiep, Nguyen Thi Minh Hong, Dang Duc Dung, Ngo Duc Quan, Tran Mau Danh, Phan The Long, Pham Duc Thang, Bui Dinh Tu\",\"doi\":\"10.2320/matertrans.mt-mg2022026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of two dielectric-magnetic components in the same composite has been shown to significantly improve the effectiveness of electromagnetic (EM) shielding and microwave absorption (MWA) because they have both a combination of high dielectric and magnetic losses and good impedance matching. The novel Bi1/2(Na0.8K0.2)1/2TiO3/Fe3O4 (BNKT/Fe3O4) composite has been successfully synthesized by a two-step method with wide effective absorption bandwidth (EAB = 16 GHz) in the high-frequency (2–18 GHz). It was evident that the MWA efficiency of the BNKT/Fe3O4 composite has been significantly improved compared with pure Bi1/2(Na0.8K0.2)1/2TiO3 or Fe3O4 materials. In addition, the BNKT/Fe3O4 composite could achieve reflection loss (RL = −39.41 dB, ∼99.99% at 10.16 GHz) with a sample thickness optimal (d = 4.7 mm). This work shows that the novel BNKT/Fe3O4 composite has excellent MWA properties, all contributing to a potential candidate in the electromagnetic wave absorption and shielding fields.\",\"PeriodicalId\":18402,\"journal\":{\"name\":\"Materials Transactions\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2320/matertrans.mt-mg2022026\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/matertrans.mt-mg2022026","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and Microwave Absorption Properties of Novel Bi<sub>1/2</sub>(Na<sub>0.8</sub>K<sub>0.2</sub>)<sub>1/2</sub>TiO<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> Composite
The combination of two dielectric-magnetic components in the same composite has been shown to significantly improve the effectiveness of electromagnetic (EM) shielding and microwave absorption (MWA) because they have both a combination of high dielectric and magnetic losses and good impedance matching. The novel Bi1/2(Na0.8K0.2)1/2TiO3/Fe3O4 (BNKT/Fe3O4) composite has been successfully synthesized by a two-step method with wide effective absorption bandwidth (EAB = 16 GHz) in the high-frequency (2–18 GHz). It was evident that the MWA efficiency of the BNKT/Fe3O4 composite has been significantly improved compared with pure Bi1/2(Na0.8K0.2)1/2TiO3 or Fe3O4 materials. In addition, the BNKT/Fe3O4 composite could achieve reflection loss (RL = −39.41 dB, ∼99.99% at 10.16 GHz) with a sample thickness optimal (d = 4.7 mm). This work shows that the novel BNKT/Fe3O4 composite has excellent MWA properties, all contributing to a potential candidate in the electromagnetic wave absorption and shielding fields.