{"title":"MuDeLA:用于入侵检测系统的多级深度学习方法","authors":"Wathiq Laftah Al-Yaseen, Ali Kadhum Idrees","doi":"10.1080/1206212x.2023.2275084","DOIUrl":null,"url":null,"abstract":"AbstractIn recent years, deep learning techniques have achieved significant results in several fields, like computer vision, speech recognition, bioinformatics, medical image analysis, and natural language processing. On the other hand, deep learning for intrusion detection has been widely used, particularly the implementation of convolutional neural networks (CNN), multilayer perceptron (MLP), and autoencoders (AE) to classify normal and abnormal. In this article, we propose a multi-level deep learning approach (MuDeLA) for intrusion detection systems (IDS). The MuDeLA is based on CNN and MLP to enhance the performance of detecting attacks in the IDS. The MuDeLA is evaluated by using various well-known benchmark datasets like KDDCup'99, NSL-KDD, and UNSW-NB15 in order to expand the comparison with different related work results. The outcomes show that the proposed MuDeLA achieves high efficiency for multiclass classification compared with the other methods, where the accuracy reaches 95.55% for KDDCup'99, 88.12% for NSL-KDD, and 90.52% for UNSW-NB15.Keywords: Intrusion detection systemmultilevel learning modeldeep learningconvolution neural networkmultilayer perceptron Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsWathiq Laftah Al-YaseenWathiq Laftah Al-Yaseen is currently a Lecturer in the Department of Computer Systems Techniques at Kerbala Technical Institute in Al-Furat Al-Awsat Technical University, Kerbala, Iraq. He received his Master of Computer Science from the University of Babylon, Iraq. He received his PhD of Computer Science from FTSM/UKM, Malaysia. His research interests include artificial intelligence, network security, machine learning, data mining and bioinformatics.Ali Kadhum IdreesAli Kadhum Idrees received his BSc and MSc in Computer Science from the University of Babylon, Iraq in 2000 and 2003 respectively. He received his PhD in Computer Science (wireless networks) in 2015 from the University of Franche-Comte (UFC), France. He is currently an Assistant Professor in Computer Science at the University of Babylon, Iraq. He has several research papers in wireless sensor networks (WSNs) and computer networks. His research interests include wireless networks, WSNs, SDN, IoT, distributed computing, data mining and optimisation in communication networks.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"116 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MuDeLA: multi-level deep learning approach for intrusion detection systems\",\"authors\":\"Wathiq Laftah Al-Yaseen, Ali Kadhum Idrees\",\"doi\":\"10.1080/1206212x.2023.2275084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn recent years, deep learning techniques have achieved significant results in several fields, like computer vision, speech recognition, bioinformatics, medical image analysis, and natural language processing. On the other hand, deep learning for intrusion detection has been widely used, particularly the implementation of convolutional neural networks (CNN), multilayer perceptron (MLP), and autoencoders (AE) to classify normal and abnormal. In this article, we propose a multi-level deep learning approach (MuDeLA) for intrusion detection systems (IDS). The MuDeLA is based on CNN and MLP to enhance the performance of detecting attacks in the IDS. The MuDeLA is evaluated by using various well-known benchmark datasets like KDDCup'99, NSL-KDD, and UNSW-NB15 in order to expand the comparison with different related work results. The outcomes show that the proposed MuDeLA achieves high efficiency for multiclass classification compared with the other methods, where the accuracy reaches 95.55% for KDDCup'99, 88.12% for NSL-KDD, and 90.52% for UNSW-NB15.Keywords: Intrusion detection systemmultilevel learning modeldeep learningconvolution neural networkmultilayer perceptron Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsWathiq Laftah Al-YaseenWathiq Laftah Al-Yaseen is currently a Lecturer in the Department of Computer Systems Techniques at Kerbala Technical Institute in Al-Furat Al-Awsat Technical University, Kerbala, Iraq. He received his Master of Computer Science from the University of Babylon, Iraq. He received his PhD of Computer Science from FTSM/UKM, Malaysia. His research interests include artificial intelligence, network security, machine learning, data mining and bioinformatics.Ali Kadhum IdreesAli Kadhum Idrees received his BSc and MSc in Computer Science from the University of Babylon, Iraq in 2000 and 2003 respectively. He received his PhD in Computer Science (wireless networks) in 2015 from the University of Franche-Comte (UFC), France. He is currently an Assistant Professor in Computer Science at the University of Babylon, Iraq. He has several research papers in wireless sensor networks (WSNs) and computer networks. His research interests include wireless networks, WSNs, SDN, IoT, distributed computing, data mining and optimisation in communication networks.\",\"PeriodicalId\":39673,\"journal\":{\"name\":\"International Journal of Computers and Applications\",\"volume\":\"116 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1206212x.2023.2275084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212x.2023.2275084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
MuDeLA: multi-level deep learning approach for intrusion detection systems
AbstractIn recent years, deep learning techniques have achieved significant results in several fields, like computer vision, speech recognition, bioinformatics, medical image analysis, and natural language processing. On the other hand, deep learning for intrusion detection has been widely used, particularly the implementation of convolutional neural networks (CNN), multilayer perceptron (MLP), and autoencoders (AE) to classify normal and abnormal. In this article, we propose a multi-level deep learning approach (MuDeLA) for intrusion detection systems (IDS). The MuDeLA is based on CNN and MLP to enhance the performance of detecting attacks in the IDS. The MuDeLA is evaluated by using various well-known benchmark datasets like KDDCup'99, NSL-KDD, and UNSW-NB15 in order to expand the comparison with different related work results. The outcomes show that the proposed MuDeLA achieves high efficiency for multiclass classification compared with the other methods, where the accuracy reaches 95.55% for KDDCup'99, 88.12% for NSL-KDD, and 90.52% for UNSW-NB15.Keywords: Intrusion detection systemmultilevel learning modeldeep learningconvolution neural networkmultilayer perceptron Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsWathiq Laftah Al-YaseenWathiq Laftah Al-Yaseen is currently a Lecturer in the Department of Computer Systems Techniques at Kerbala Technical Institute in Al-Furat Al-Awsat Technical University, Kerbala, Iraq. He received his Master of Computer Science from the University of Babylon, Iraq. He received his PhD of Computer Science from FTSM/UKM, Malaysia. His research interests include artificial intelligence, network security, machine learning, data mining and bioinformatics.Ali Kadhum IdreesAli Kadhum Idrees received his BSc and MSc in Computer Science from the University of Babylon, Iraq in 2000 and 2003 respectively. He received his PhD in Computer Science (wireless networks) in 2015 from the University of Franche-Comte (UFC), France. He is currently an Assistant Professor in Computer Science at the University of Babylon, Iraq. He has several research papers in wireless sensor networks (WSNs) and computer networks. His research interests include wireless networks, WSNs, SDN, IoT, distributed computing, data mining and optimisation in communication networks.
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.