基于多时间尺度滤波的锂离子电池能量状态估计新方法

IF 4.8 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Automotive Innovation Pub Date : 2023-11-01 DOI:10.1007/s42154-023-00271-y
Guangming Zhao, Wei Xu, Yifan Wang
{"title":"基于多时间尺度滤波的锂离子电池能量状态估计新方法","authors":"Guangming Zhao,&nbsp;Wei Xu,&nbsp;Yifan Wang","doi":"10.1007/s42154-023-00271-y","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate estimation of the state-of-energy (SOE) in lithium-ion batteries is critical for optimal energy management and energy optimization in electric vehicles. However, the conventional recursive least squares (RLS) algorithm struggle to track changes in battery model parameters under dynamic conditions. To address this, a multi-timescale estimator is proposed. A variable forgetting factor RLS approach is used to determine the model parameters at a macro timescale, and the H infinity filter is utilized to estimate the SOE at a micro timescale. The proposed algorithm is verified and analyzed and shown to have accurate and robust identification of battery model parameters. Finally, experiments under dynamic cycles demonstrate that the proposed algorithm has a high level of accuracy for SOE estimation.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 4","pages":"611 - 621"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Method for Estimating Lithium-Ion Battery State-of-Energy Based on Multi-timescale Filter\",\"authors\":\"Guangming Zhao,&nbsp;Wei Xu,&nbsp;Yifan Wang\",\"doi\":\"10.1007/s42154-023-00271-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate estimation of the state-of-energy (SOE) in lithium-ion batteries is critical for optimal energy management and energy optimization in electric vehicles. However, the conventional recursive least squares (RLS) algorithm struggle to track changes in battery model parameters under dynamic conditions. To address this, a multi-timescale estimator is proposed. A variable forgetting factor RLS approach is used to determine the model parameters at a macro timescale, and the H infinity filter is utilized to estimate the SOE at a micro timescale. The proposed algorithm is verified and analyzed and shown to have accurate and robust identification of battery model parameters. Finally, experiments under dynamic cycles demonstrate that the proposed algorithm has a high level of accuracy for SOE estimation.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"6 4\",\"pages\":\"611 - 621\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-023-00271-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-023-00271-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

准确估计锂离子电池的能量状态(SOE)对电动汽车的最佳能量管理和能量优化至关重要。然而,传统的递归最小二乘(RLS)算法难以跟踪动态条件下电池模型参数的变化。为了解决这个问题,提出了一个多时间尺度估计器。采用变遗忘因子RLS方法在宏观时间尺度上确定模型参数,利用H∞滤波器在微观时间尺度上估计SOE。对该算法进行了验证和分析,结果表明该算法对电池模型参数具有准确、鲁棒性。最后,在动态循环条件下的实验表明,该算法具有较高的SOE估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Method for Estimating Lithium-Ion Battery State-of-Energy Based on Multi-timescale Filter

Accurate estimation of the state-of-energy (SOE) in lithium-ion batteries is critical for optimal energy management and energy optimization in electric vehicles. However, the conventional recursive least squares (RLS) algorithm struggle to track changes in battery model parameters under dynamic conditions. To address this, a multi-timescale estimator is proposed. A variable forgetting factor RLS approach is used to determine the model parameters at a macro timescale, and the H infinity filter is utilized to estimate the SOE at a micro timescale. The proposed algorithm is verified and analyzed and shown to have accurate and robust identification of battery model parameters. Finally, experiments under dynamic cycles demonstrate that the proposed algorithm has a high level of accuracy for SOE estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automotive Innovation
Automotive Innovation Engineering-Automotive Engineering
CiteScore
8.50
自引率
4.90%
发文量
36
期刊介绍: Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.
期刊最新文献
Driver Steering Behaviour Modelling Based on Neuromuscular Dynamics and Multi-Task Time-Series Transformer Mechanically Joined Extrusion Profiles for Battery Trays Mode Switching and Consistency Control for Electric-Hydraulic Hybrid Steering System Review of Electrical and Electronic Architectures for Autonomous Vehicles: Topologies, Networking and Simulators In-Vehicle Network Injection Attacks Detection Based on Feature Selection and Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1