热环境对功能梯度碳纳米管圆柱-锥形壳自由振动的影响

IF 2.6 3区 工程技术 Q2 MECHANICS Journal of Thermal Stresses Pub Date : 2023-11-01 DOI:10.1080/01495739.2023.2271525
Mohammad Javad Babaei, Ali Asghar Jafari
{"title":"热环境对功能梯度碳纳米管圆柱-锥形壳自由振动的影响","authors":"Mohammad Javad Babaei, Ali Asghar Jafari","doi":"10.1080/01495739.2023.2271525","DOIUrl":null,"url":null,"abstract":"AbstractThis research analyzes the influence of temperature changes on the vibration of single-walled carbon nanotubes (SW-CNTs) composite joined conical-cylindrical shells. The governing dynamic equations of temperature-dependent CNTs with initial thermomechanical stresses are established using the Love shell assumptions and classical shell theory. The initial thermomechanical stresses are derived from the linear membrane approach method. Two possibilities are assumed for the calculation of temperature change: a uniform temperature distribution and steady-state heat transfer by conduction through the thickness of the shell. The initial thermomechanical stresses are determined using the linear membrane approach. The generalized differential quadrature (GDQ) method is used to solve the equations after combining it with continuity conditions between the conical part and the cylindrical part and various boundary conditions. After validating the natural frequency and the different types of temperature distribution with the studies of other researchers, the effects of semi vortex of the cone, the volume fraction, and the type of distribution on the temperature rise are given as the results. The type of temperature distribution has the greatest influence among the parameters.Keywords: GDQ methodjoint shelltemperature effectthermal conductionvibration Disclosure statementAll authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.","PeriodicalId":54759,"journal":{"name":"Journal of Thermal Stresses","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of thermal environment on the free vibration of functionally graded carbon nanotubes cylindrical-conical shell\",\"authors\":\"Mohammad Javad Babaei, Ali Asghar Jafari\",\"doi\":\"10.1080/01495739.2023.2271525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThis research analyzes the influence of temperature changes on the vibration of single-walled carbon nanotubes (SW-CNTs) composite joined conical-cylindrical shells. The governing dynamic equations of temperature-dependent CNTs with initial thermomechanical stresses are established using the Love shell assumptions and classical shell theory. The initial thermomechanical stresses are derived from the linear membrane approach method. Two possibilities are assumed for the calculation of temperature change: a uniform temperature distribution and steady-state heat transfer by conduction through the thickness of the shell. The initial thermomechanical stresses are determined using the linear membrane approach. The generalized differential quadrature (GDQ) method is used to solve the equations after combining it with continuity conditions between the conical part and the cylindrical part and various boundary conditions. After validating the natural frequency and the different types of temperature distribution with the studies of other researchers, the effects of semi vortex of the cone, the volume fraction, and the type of distribution on the temperature rise are given as the results. The type of temperature distribution has the greatest influence among the parameters.Keywords: GDQ methodjoint shelltemperature effectthermal conductionvibration Disclosure statementAll authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.\",\"PeriodicalId\":54759,\"journal\":{\"name\":\"Journal of Thermal Stresses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Stresses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01495739.2023.2271525\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Stresses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495739.2023.2271525","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究分析了温度变化对单壁碳纳米管(SW-CNTs)复合材料锥形圆柱壳连接结构振动的影响。利用Love壳假设和经典壳理论,建立了具有初始热机械应力的温度相关碳纳米管的控制动力学方程。初始热机械应力由线性膜法得到。温度变化的计算假定有两种可能性:均匀的温度分布和通过壳体厚度进行的稳态导热。初始热机械应力用线性膜法确定。将广义微分正交法与圆锥形部分与圆柱形部分之间的连续性条件和各种边界条件相结合,采用广义微分正交法求解方程。通过对固有频率和不同类型的温度分布与其他研究人员的研究进行验证,得出了锥体半涡、体积分数和分布类型对温升的影响。温度分布类型对各参数的影响最大。关键字:GDQ方法联合壳体温度效应热传导振动披露声明所有作者证明他们与任何组织或实体没有任何关联或参与,对本文所讨论的主题或材料有任何经济利益或非经济利益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of thermal environment on the free vibration of functionally graded carbon nanotubes cylindrical-conical shell
AbstractThis research analyzes the influence of temperature changes on the vibration of single-walled carbon nanotubes (SW-CNTs) composite joined conical-cylindrical shells. The governing dynamic equations of temperature-dependent CNTs with initial thermomechanical stresses are established using the Love shell assumptions and classical shell theory. The initial thermomechanical stresses are derived from the linear membrane approach method. Two possibilities are assumed for the calculation of temperature change: a uniform temperature distribution and steady-state heat transfer by conduction through the thickness of the shell. The initial thermomechanical stresses are determined using the linear membrane approach. The generalized differential quadrature (GDQ) method is used to solve the equations after combining it with continuity conditions between the conical part and the cylindrical part and various boundary conditions. After validating the natural frequency and the different types of temperature distribution with the studies of other researchers, the effects of semi vortex of the cone, the volume fraction, and the type of distribution on the temperature rise are given as the results. The type of temperature distribution has the greatest influence among the parameters.Keywords: GDQ methodjoint shelltemperature effectthermal conductionvibration Disclosure statementAll authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Stresses
Journal of Thermal Stresses 工程技术-力学
CiteScore
5.20
自引率
7.10%
发文量
58
审稿时长
3 months
期刊介绍: The first international journal devoted exclusively to the subject, Journal of Thermal Stresses publishes refereed articles on the theoretical and industrial applications of thermal stresses. Intended as a forum for those engaged in analytic as well as experimental research, this monthly journal includes papers on mathematical and practical applications. Emphasis is placed on new developments in thermoelasticity, thermoplasticity, and theory and applications of thermal stresses. Papers on experimental methods and on numerical methods, including finite element methods, are also published.
期刊最新文献
Analysis of the magnetic-thermal response of viscoelastic rotating nanobeams based on nonlocal theory and memory effect Analysis on reflected waves through semiconductor nanostructure medium with temperature dependent properties Analytical technique for hygrothermo-electroelastic field in piezoelectric bodies with D∞ symmetry Numerical analysis of the Maxwell-Cattaneo-Vernotte nonlinear model A new approach to problems of thermoelasticity in stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1