{"title":"智能电网系统中假数据注入攻击的检测:标杆深度学习技术","authors":"","doi":"10.33140/jeee.02.01.05","DOIUrl":null,"url":null,"abstract":"In essence, smart grids are electrical networks that transmit and distribute electricity in a reliable, effective manner using information and communication technology (ICT). Trust and security are of the utmost importance. False data injection (FDI) attacks are one of the most serious new security problems, and they can drastically raise the price of the energy distribution process. However, rather than smart grid infrastructures, the majority of current research focuses on FDI defenses for conventional electricity networks. By utilizing spatial-temporal correlations between grid components, we create an effective and real-time technique to identify FDI attacks in smart grids called a deep learning framework. We show that the suggested method offers an accurate and dependable solution using realistic simulations based on the smart grid compared to the benchmarked techniques.","PeriodicalId":39047,"journal":{"name":"Journal of Electrical and Electronics Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of False Data Injection Attacks in Smart-Grid Systems: Benchmarking Deep Learning Techniques\",\"authors\":\"\",\"doi\":\"10.33140/jeee.02.01.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In essence, smart grids are electrical networks that transmit and distribute electricity in a reliable, effective manner using information and communication technology (ICT). Trust and security are of the utmost importance. False data injection (FDI) attacks are one of the most serious new security problems, and they can drastically raise the price of the energy distribution process. However, rather than smart grid infrastructures, the majority of current research focuses on FDI defenses for conventional electricity networks. By utilizing spatial-temporal correlations between grid components, we create an effective and real-time technique to identify FDI attacks in smart grids called a deep learning framework. We show that the suggested method offers an accurate and dependable solution using realistic simulations based on the smart grid compared to the benchmarked techniques.\",\"PeriodicalId\":39047,\"journal\":{\"name\":\"Journal of Electrical and Electronics Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/jeee.02.01.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jeee.02.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Detection of False Data Injection Attacks in Smart-Grid Systems: Benchmarking Deep Learning Techniques
In essence, smart grids are electrical networks that transmit and distribute electricity in a reliable, effective manner using information and communication technology (ICT). Trust and security are of the utmost importance. False data injection (FDI) attacks are one of the most serious new security problems, and they can drastically raise the price of the energy distribution process. However, rather than smart grid infrastructures, the majority of current research focuses on FDI defenses for conventional electricity networks. By utilizing spatial-temporal correlations between grid components, we create an effective and real-time technique to identify FDI attacks in smart grids called a deep learning framework. We show that the suggested method offers an accurate and dependable solution using realistic simulations based on the smart grid compared to the benchmarked techniques.
期刊介绍:
Journal of Electrical and Electronics Engineering is a scientific interdisciplinary, application-oriented publication that offer to the researchers and to the PhD students the possibility to disseminate their novel and original scientific and research contributions in the field of electrical and electronics engineering. The articles are reviewed by professionals and the selection of the papers is based only on the quality of their content and following the next criteria: the papers presents the research results of the authors, the papers / the content of the papers have not been submitted or published elsewhere, the paper must be written in English, as well as the fact that the papers should include in the reference list papers already published in recent years in the Journal of Electrical and Electronics Engineering that present similar research results. The topics and instructions for authors of this journal can be found to the appropiate sections.