{"title":"土壤-水特征曲线的修正函数,扩展了热力学原理","authors":"Yao Li, Sai Vanapalli","doi":"10.1139/cgj-2023-0266","DOIUrl":null,"url":null,"abstract":"The soil-water characteristics curve (SWCC) that is typically measured from laboratory tests is fit using mathematical models that are based on capillary law and used along with the saturated soil properties for predicting the hydro-mechanical behavior of unsaturated soils. Such SWCC models are valid for coarse-grained soils. However, the same models are also extended for modeling the SWCC of fine-grained soils over suction range from 0 to 106 kPa with a correction function. Due to this reason, SWCC models with correction functions have limitations in rigorous analyses of complex thermo-hydro-mechanical-chemo (THMC) behaviors of unsaturated soils, especially in the high suction range. In the present study, correction function is proposed for modeling the SWCC behavior using two widely models based on a theoretical framework extending the principles of thermodynamics. The relationships between the traditional and the proposed correction functions are discussed. Finally, comparisons are provided between the proposed and the traditional correction functions on the SWCC behavior to highlight their differences. In addition, the effects of temperature and salinity on the SWCC with correction functions are also summarized. The proposed correction function is a valuable tool for rigorous analyses and reliable prediction of the complex THMC behaviors of unsaturated soils.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":" 9","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction Functions for Soil-Water Characteristics Curves Extending the Principles of Thermodynamics\",\"authors\":\"Yao Li, Sai Vanapalli\",\"doi\":\"10.1139/cgj-2023-0266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The soil-water characteristics curve (SWCC) that is typically measured from laboratory tests is fit using mathematical models that are based on capillary law and used along with the saturated soil properties for predicting the hydro-mechanical behavior of unsaturated soils. Such SWCC models are valid for coarse-grained soils. However, the same models are also extended for modeling the SWCC of fine-grained soils over suction range from 0 to 106 kPa with a correction function. Due to this reason, SWCC models with correction functions have limitations in rigorous analyses of complex thermo-hydro-mechanical-chemo (THMC) behaviors of unsaturated soils, especially in the high suction range. In the present study, correction function is proposed for modeling the SWCC behavior using two widely models based on a theoretical framework extending the principles of thermodynamics. The relationships between the traditional and the proposed correction functions are discussed. Finally, comparisons are provided between the proposed and the traditional correction functions on the SWCC behavior to highlight their differences. In addition, the effects of temperature and salinity on the SWCC with correction functions are also summarized. The proposed correction function is a valuable tool for rigorous analyses and reliable prediction of the complex THMC behaviors of unsaturated soils.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\" 9\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0266\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0266","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Correction Functions for Soil-Water Characteristics Curves Extending the Principles of Thermodynamics
The soil-water characteristics curve (SWCC) that is typically measured from laboratory tests is fit using mathematical models that are based on capillary law and used along with the saturated soil properties for predicting the hydro-mechanical behavior of unsaturated soils. Such SWCC models are valid for coarse-grained soils. However, the same models are also extended for modeling the SWCC of fine-grained soils over suction range from 0 to 106 kPa with a correction function. Due to this reason, SWCC models with correction functions have limitations in rigorous analyses of complex thermo-hydro-mechanical-chemo (THMC) behaviors of unsaturated soils, especially in the high suction range. In the present study, correction function is proposed for modeling the SWCC behavior using two widely models based on a theoretical framework extending the principles of thermodynamics. The relationships between the traditional and the proposed correction functions are discussed. Finally, comparisons are provided between the proposed and the traditional correction functions on the SWCC behavior to highlight their differences. In addition, the effects of temperature and salinity on the SWCC with correction functions are also summarized. The proposed correction function is a valuable tool for rigorous analyses and reliable prediction of the complex THMC behaviors of unsaturated soils.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.