Geir Bogfjellmo, Elena Celledoni, Robert McLachlan, Brynjulf Owren, G. Quispel
{"title":"在Kahan的方法中使用香味来搜索保留的度量和积分","authors":"Geir Bogfjellmo, Elena Celledoni, Robert McLachlan, Brynjulf Owren, G. Quispel","doi":"10.1090/mcom/3921","DOIUrl":null,"url":null,"abstract":"The numerical method of Kahan applied to quadratic differential equations is known to often generate integrable maps in low dimensions and can in more general situations exhibit preserved measures and integrals. Computerized methods based on discrete Darboux polynomials have recently been used for finding these measures and integrals. However, if the differential system contains many parameters, this approach can lead to highly complex results that can be difficult to interpret and analyse. But this complexity can in some cases be substantially reduced by using aromatic series. These are a mathematical tool introduced independently by Chartier and Murua and by Iserles, Quispel and Tse. We develop an algorithm for this purpose and derive some necessary conditions for the Kahan map to have preserved measures and integrals expressible in terms of aromatic functions. An important reason for the success of this method lies in the equivariance of the map from vector fields to their aromatic functions. We demonstrate the algorithm on a number of examples showing a great reduction in complexity compared to what had been obtained by a fixed basis such as monomials.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":" 68","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using aromas to search for preserved measures and integrals in Kahan’s method\",\"authors\":\"Geir Bogfjellmo, Elena Celledoni, Robert McLachlan, Brynjulf Owren, G. Quispel\",\"doi\":\"10.1090/mcom/3921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical method of Kahan applied to quadratic differential equations is known to often generate integrable maps in low dimensions and can in more general situations exhibit preserved measures and integrals. Computerized methods based on discrete Darboux polynomials have recently been used for finding these measures and integrals. However, if the differential system contains many parameters, this approach can lead to highly complex results that can be difficult to interpret and analyse. But this complexity can in some cases be substantially reduced by using aromatic series. These are a mathematical tool introduced independently by Chartier and Murua and by Iserles, Quispel and Tse. We develop an algorithm for this purpose and derive some necessary conditions for the Kahan map to have preserved measures and integrals expressible in terms of aromatic functions. An important reason for the success of this method lies in the equivariance of the map from vector fields to their aromatic functions. We demonstrate the algorithm on a number of examples showing a great reduction in complexity compared to what had been obtained by a fixed basis such as monomials.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\" 68\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3921\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3921","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Using aromas to search for preserved measures and integrals in Kahan’s method
The numerical method of Kahan applied to quadratic differential equations is known to often generate integrable maps in low dimensions and can in more general situations exhibit preserved measures and integrals. Computerized methods based on discrete Darboux polynomials have recently been used for finding these measures and integrals. However, if the differential system contains many parameters, this approach can lead to highly complex results that can be difficult to interpret and analyse. But this complexity can in some cases be substantially reduced by using aromatic series. These are a mathematical tool introduced independently by Chartier and Murua and by Iserles, Quispel and Tse. We develop an algorithm for this purpose and derive some necessary conditions for the Kahan map to have preserved measures and integrals expressible in terms of aromatic functions. An important reason for the success of this method lies in the equivariance of the map from vector fields to their aromatic functions. We demonstrate the algorithm on a number of examples showing a great reduction in complexity compared to what had been obtained by a fixed basis such as monomials.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.