Jessica Nephin, Patrick L. Thompson, Sean C. Anderson, Ashley E. Park, Christopher N. Rooper, Brendan Aulthouse, Joe Watson
{"title":"在物种分布模型中整合不同的调查数据表明需要稳健的模型评估","authors":"Jessica Nephin, Patrick L. Thompson, Sean C. Anderson, Ashley E. Park, Christopher N. Rooper, Brendan Aulthouse, Joe Watson","doi":"10.1139/cjfas-2022-0279","DOIUrl":null,"url":null,"abstract":"Marine spatial planning and conservation initiatives benefit from an understanding of species distributions across larger geographic areas than are often sampled by any one survey. Here, we test whether the integration of disparate survey data can improve habitat predictions across a region not well sampled by a single survey using Dungeness crab ( Metacarcinus magister) from British Columbia as a case study. We assemble data from dive, trawl, and baited-trap surveys to generate six candidate generalized linear mixed-effect models with spatial random fields. To compare single-survey and integrated models, we evaluate predictive performance with spatially buffered leave-one-out cross-validation and independently with two novel approaches using fisheries catch data. We find improved predictive performance and reduced uncertainty when integrating data from surveys that suffer from small sample size, low detectability, or limited spatial coverage. We demonstrate the importance of robust model evaluation when integrating data and predicting to unsampled locations. In addition, we highlight the need for careful consideration of sampling biases and model assumptions when integrating data to reduce the risk of prediction errors.","PeriodicalId":9515,"journal":{"name":"Canadian Journal of Fisheries and Aquatic Sciences","volume":" 62","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating disparate survey data in species distribution models demonstrate the need for robust model evaluation\",\"authors\":\"Jessica Nephin, Patrick L. Thompson, Sean C. Anderson, Ashley E. Park, Christopher N. Rooper, Brendan Aulthouse, Joe Watson\",\"doi\":\"10.1139/cjfas-2022-0279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine spatial planning and conservation initiatives benefit from an understanding of species distributions across larger geographic areas than are often sampled by any one survey. Here, we test whether the integration of disparate survey data can improve habitat predictions across a region not well sampled by a single survey using Dungeness crab ( Metacarcinus magister) from British Columbia as a case study. We assemble data from dive, trawl, and baited-trap surveys to generate six candidate generalized linear mixed-effect models with spatial random fields. To compare single-survey and integrated models, we evaluate predictive performance with spatially buffered leave-one-out cross-validation and independently with two novel approaches using fisheries catch data. We find improved predictive performance and reduced uncertainty when integrating data from surveys that suffer from small sample size, low detectability, or limited spatial coverage. We demonstrate the importance of robust model evaluation when integrating data and predicting to unsampled locations. In addition, we highlight the need for careful consideration of sampling biases and model assumptions when integrating data to reduce the risk of prediction errors.\",\"PeriodicalId\":9515,\"journal\":{\"name\":\"Canadian Journal of Fisheries and Aquatic Sciences\",\"volume\":\" 62\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Fisheries and Aquatic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfas-2022-0279\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Fisheries and Aquatic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cjfas-2022-0279","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Integrating disparate survey data in species distribution models demonstrate the need for robust model evaluation
Marine spatial planning and conservation initiatives benefit from an understanding of species distributions across larger geographic areas than are often sampled by any one survey. Here, we test whether the integration of disparate survey data can improve habitat predictions across a region not well sampled by a single survey using Dungeness crab ( Metacarcinus magister) from British Columbia as a case study. We assemble data from dive, trawl, and baited-trap surveys to generate six candidate generalized linear mixed-effect models with spatial random fields. To compare single-survey and integrated models, we evaluate predictive performance with spatially buffered leave-one-out cross-validation and independently with two novel approaches using fisheries catch data. We find improved predictive performance and reduced uncertainty when integrating data from surveys that suffer from small sample size, low detectability, or limited spatial coverage. We demonstrate the importance of robust model evaluation when integrating data and predicting to unsampled locations. In addition, we highlight the need for careful consideration of sampling biases and model assumptions when integrating data to reduce the risk of prediction errors.
期刊介绍:
The Canadian Journal of Fisheries and Aquatic Sciences is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on -omics, cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science.