{"title":"预测器效应滞后的估计与函数线性模型的预测","authors":"Haiyan Liu, Georgios Aivaliotis, Vijay Kumar, Jeanine Houwing-Duistermaat","doi":"10.1007/s12561-023-09393-7","DOIUrl":null,"url":null,"abstract":"Abstract We propose a functional linear model to predict a functional response using multiple functional and longitudinal predictors and to estimate the effect lags of predictors. The coefficient functions are written as the expansion of a basis system (e.g. functional principal components, splines), and the coefficients of the basis functions are estimated via optimizing a penalization criterion. Then effect lags are determined by simultaneously searching on a prior designed grid mesh based on minimization of a proposed prediction error criterion. Mathematical properties of the estimated regression functions and predicted responses are studied. The performance of the method is evaluated by extensive simulations and a real data analysis application on chronic obstructive pulmonary disease (COPD).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Estimation of the Effect Lag of Predictors and Prediction in a Functional Linear Model\",\"authors\":\"Haiyan Liu, Georgios Aivaliotis, Vijay Kumar, Jeanine Houwing-Duistermaat\",\"doi\":\"10.1007/s12561-023-09393-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a functional linear model to predict a functional response using multiple functional and longitudinal predictors and to estimate the effect lags of predictors. The coefficient functions are written as the expansion of a basis system (e.g. functional principal components, splines), and the coefficients of the basis functions are estimated via optimizing a penalization criterion. Then effect lags are determined by simultaneously searching on a prior designed grid mesh based on minimization of a proposed prediction error criterion. Mathematical properties of the estimated regression functions and predicted responses are studied. The performance of the method is evaluated by extensive simulations and a real data analysis application on chronic obstructive pulmonary disease (COPD).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12561-023-09393-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-023-09393-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Estimation of the Effect Lag of Predictors and Prediction in a Functional Linear Model
Abstract We propose a functional linear model to predict a functional response using multiple functional and longitudinal predictors and to estimate the effect lags of predictors. The coefficient functions are written as the expansion of a basis system (e.g. functional principal components, splines), and the coefficients of the basis functions are estimated via optimizing a penalization criterion. Then effect lags are determined by simultaneously searching on a prior designed grid mesh based on minimization of a proposed prediction error criterion. Mathematical properties of the estimated regression functions and predicted responses are studied. The performance of the method is evaluated by extensive simulations and a real data analysis application on chronic obstructive pulmonary disease (COPD).