{"title":"Ni-Cr-Mo高温合金蠕变特性及等时应力-应变曲线研究","authors":"Guangcheng Fan, Guangzhou Yuan, Wanxia Wang, Songlin Wang, Jianxiong Zhang, Yanyan Jia, Jiamin Wang, Yanling Lu","doi":"10.1080/09603409.2023.2277565","DOIUrl":null,"url":null,"abstract":"ABSTRACTC276 superalloy is considered as a potential structural material for advanced nuclear reactor with good mechanical properties and corrosion resistance. High-temperature creep behaviour of C276 alloy was investigated in the temperature range of 650°C–700°C and at stresses of 140–430 MPa. A linear relationship was fitted between stress and minimum creep rate in the logarithmic coordinate system. The rupture time is analysed for life prediction in terms of isotherm extrapolation method, Monkman–Grant relation, and Larson–Miller parameter method, respectively. The isochronous stress–strain curves as a means of representing stress–strain–time relations under creep conditions were established by the parameter method. The fracture surface morphology of ruptured specimens was characterised by a scanning electron microscope to elucidate the failure mechanism.KEYWORDS: Ni-Mo-Cr superalloycreep rupturelife predictionisochronous stress–strain curve AcknowledgmentsThis work was supported by the National Natural Science Foundation of China (Grant nos. 52071330, 51901241), the Research Project of Shanghai Science and Technology Commission (19DZ2200300), the National Key Research and Development Program (Grant no. 2021YFB3700605), the Young Potential Program of Shanghai Institute of Applied Physics, Chinese Academy of Sciences and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02004210).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China [52071330]; National Natural Science Foundation of China [51901241]; the Strategic Priority Research Program of the Chinese Academy of Sciences [XDA02004210]; Research Project of Shanghai Science and Technology Commission [19DZ2200300]; the National Key Research and Development Program [2021YFB3700605].","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"123 3","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on creep characteristics and the isochronous stress–strain curve of Ni-Cr-Mo superalloy\",\"authors\":\"Guangcheng Fan, Guangzhou Yuan, Wanxia Wang, Songlin Wang, Jianxiong Zhang, Yanyan Jia, Jiamin Wang, Yanling Lu\",\"doi\":\"10.1080/09603409.2023.2277565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTC276 superalloy is considered as a potential structural material for advanced nuclear reactor with good mechanical properties and corrosion resistance. High-temperature creep behaviour of C276 alloy was investigated in the temperature range of 650°C–700°C and at stresses of 140–430 MPa. A linear relationship was fitted between stress and minimum creep rate in the logarithmic coordinate system. The rupture time is analysed for life prediction in terms of isotherm extrapolation method, Monkman–Grant relation, and Larson–Miller parameter method, respectively. The isochronous stress–strain curves as a means of representing stress–strain–time relations under creep conditions were established by the parameter method. The fracture surface morphology of ruptured specimens was characterised by a scanning electron microscope to elucidate the failure mechanism.KEYWORDS: Ni-Mo-Cr superalloycreep rupturelife predictionisochronous stress–strain curve AcknowledgmentsThis work was supported by the National Natural Science Foundation of China (Grant nos. 52071330, 51901241), the Research Project of Shanghai Science and Technology Commission (19DZ2200300), the National Key Research and Development Program (Grant no. 2021YFB3700605), the Young Potential Program of Shanghai Institute of Applied Physics, Chinese Academy of Sciences and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02004210).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China [52071330]; National Natural Science Foundation of China [51901241]; the Strategic Priority Research Program of the Chinese Academy of Sciences [XDA02004210]; Research Project of Shanghai Science and Technology Commission [19DZ2200300]; the National Key Research and Development Program [2021YFB3700605].\",\"PeriodicalId\":49877,\"journal\":{\"name\":\"Materials at High Temperatures\",\"volume\":\"123 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials at High Temperatures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09603409.2023.2277565\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2277565","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on creep characteristics and the isochronous stress–strain curve of Ni-Cr-Mo superalloy
ABSTRACTC276 superalloy is considered as a potential structural material for advanced nuclear reactor with good mechanical properties and corrosion resistance. High-temperature creep behaviour of C276 alloy was investigated in the temperature range of 650°C–700°C and at stresses of 140–430 MPa. A linear relationship was fitted between stress and minimum creep rate in the logarithmic coordinate system. The rupture time is analysed for life prediction in terms of isotherm extrapolation method, Monkman–Grant relation, and Larson–Miller parameter method, respectively. The isochronous stress–strain curves as a means of representing stress–strain–time relations under creep conditions were established by the parameter method. The fracture surface morphology of ruptured specimens was characterised by a scanning electron microscope to elucidate the failure mechanism.KEYWORDS: Ni-Mo-Cr superalloycreep rupturelife predictionisochronous stress–strain curve AcknowledgmentsThis work was supported by the National Natural Science Foundation of China (Grant nos. 52071330, 51901241), the Research Project of Shanghai Science and Technology Commission (19DZ2200300), the National Key Research and Development Program (Grant no. 2021YFB3700605), the Young Potential Program of Shanghai Institute of Applied Physics, Chinese Academy of Sciences and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02004210).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China [52071330]; National Natural Science Foundation of China [51901241]; the Strategic Priority Research Program of the Chinese Academy of Sciences [XDA02004210]; Research Project of Shanghai Science and Technology Commission [19DZ2200300]; the National Key Research and Development Program [2021YFB3700605].
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.