Menuka Adhikari, Shubham Sharma, Elena Echeverria, David N. McIlroy and Yolanda Vasquez*,
{"title":"用氧化铁前驱体形成磷化铁纳米束","authors":"Menuka Adhikari, Shubham Sharma, Elena Echeverria, David N. McIlroy and Yolanda Vasquez*, ","doi":"10.1021/acsnanoscienceau.3c00036","DOIUrl":null,"url":null,"abstract":"<p >Iron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process. Here, we use iron oxyhydroxide (β-FeOOH) as a cost-effective, environmentally friendly, and air-stable source of iron, along with tri-<i>n</i>-octylphosphine (TOP) as the phosphorus source and solvent. FeP is formed in a nanobundle morphology in the solution phase reaction at a temperature of 320 °C. The materials were characterized by pXRD and transmission electron microscopy (TEM). The optimization parameters evaluated to produce the phosphorus-rich FeP phase included the reaction rate, time, amount of TOP, and reaction temperature. Mixtures of Fe<sub>2</sub>P and FeP phases were obtained at shorter reaction times and slow heating rates (4.5 °C /min), while longer reaction times and faster heating rates (18.8 °C/min) favored the formation of phosphorus-rich FeP. Overall, the reaction lever that consistently yielded FeP as the predominant crystalline phase was a fast heat rate.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 6","pages":"491–499"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00036","citationCount":"0","resultStr":"{\"title\":\"Formation of Iron Phosphide Nanobundles from an Iron Oxyhydroxide Precursor\",\"authors\":\"Menuka Adhikari, Shubham Sharma, Elena Echeverria, David N. McIlroy and Yolanda Vasquez*, \",\"doi\":\"10.1021/acsnanoscienceau.3c00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Iron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process. Here, we use iron oxyhydroxide (β-FeOOH) as a cost-effective, environmentally friendly, and air-stable source of iron, along with tri-<i>n</i>-octylphosphine (TOP) as the phosphorus source and solvent. FeP is formed in a nanobundle morphology in the solution phase reaction at a temperature of 320 °C. The materials were characterized by pXRD and transmission electron microscopy (TEM). The optimization parameters evaluated to produce the phosphorus-rich FeP phase included the reaction rate, time, amount of TOP, and reaction temperature. Mixtures of Fe<sub>2</sub>P and FeP phases were obtained at shorter reaction times and slow heating rates (4.5 °C /min), while longer reaction times and faster heating rates (18.8 °C/min) favored the formation of phosphorus-rich FeP. Overall, the reaction lever that consistently yielded FeP as the predominant crystalline phase was a fast heat rate.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"3 6\",\"pages\":\"491–499\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Formation of Iron Phosphide Nanobundles from an Iron Oxyhydroxide Precursor
Iron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process. Here, we use iron oxyhydroxide (β-FeOOH) as a cost-effective, environmentally friendly, and air-stable source of iron, along with tri-n-octylphosphine (TOP) as the phosphorus source and solvent. FeP is formed in a nanobundle morphology in the solution phase reaction at a temperature of 320 °C. The materials were characterized by pXRD and transmission electron microscopy (TEM). The optimization parameters evaluated to produce the phosphorus-rich FeP phase included the reaction rate, time, amount of TOP, and reaction temperature. Mixtures of Fe2P and FeP phases were obtained at shorter reaction times and slow heating rates (4.5 °C /min), while longer reaction times and faster heating rates (18.8 °C/min) favored the formation of phosphorus-rich FeP. Overall, the reaction lever that consistently yielded FeP as the predominant crystalline phase was a fast heat rate.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.