{"title":"三相电压源逆变器的自适应最优滑模控制:强化学习方法","authors":"Nga Thi-Thuy Vu, Hieu Xuan Nguyen, Manh Quang Bui","doi":"10.1177/01423312231206203","DOIUrl":null,"url":null,"abstract":"The operation of the three-phase standalone inverter is affected by many factors, such as heavy changes in load, unbalanced loads, nonlinear loads, system uncertainties and external disturbances. These are critical weaknesses for the control system of the three-phase inverter to reach robust optimal performance. This paper proposes an adaptive optimal sliding mode control (AOSMC) scheme for a three-phase nonlinear uncertain inverter. This AOSMC strategy solves the problems of nonlinear optimization by adaptive dynamic programming, one of the techniques of reinforcement learning, and overcomes the uncertainties and disturbance effects by a disturbance observer–based sliding mode controller. This algorithm uses only one neural network to approximate the critic; therefore, the burden of computation is significantly reduced. Both the weight matrix of the critic network and the disturbance observer are asymptotically stable. The overall system is guaranteed to be ultimately uniformly bounded stable via Lyapunov stable theory. The simulation is conducted to validate the insensitivity of the proposed AOSMC algorithm to working conditions. Also, the competitive results are presented to demonstrate the improvement of the proposed AOSMC scheme in comparison to some other existing controllers.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":"47 S222","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive optimal sliding mode control for three-phase voltage source inverter: Reinforcement learning approach\",\"authors\":\"Nga Thi-Thuy Vu, Hieu Xuan Nguyen, Manh Quang Bui\",\"doi\":\"10.1177/01423312231206203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation of the three-phase standalone inverter is affected by many factors, such as heavy changes in load, unbalanced loads, nonlinear loads, system uncertainties and external disturbances. These are critical weaknesses for the control system of the three-phase inverter to reach robust optimal performance. This paper proposes an adaptive optimal sliding mode control (AOSMC) scheme for a three-phase nonlinear uncertain inverter. This AOSMC strategy solves the problems of nonlinear optimization by adaptive dynamic programming, one of the techniques of reinforcement learning, and overcomes the uncertainties and disturbance effects by a disturbance observer–based sliding mode controller. This algorithm uses only one neural network to approximate the critic; therefore, the burden of computation is significantly reduced. Both the weight matrix of the critic network and the disturbance observer are asymptotically stable. The overall system is guaranteed to be ultimately uniformly bounded stable via Lyapunov stable theory. The simulation is conducted to validate the insensitivity of the proposed AOSMC algorithm to working conditions. Also, the competitive results are presented to demonstrate the improvement of the proposed AOSMC scheme in comparison to some other existing controllers.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\"47 S222\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231206203\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01423312231206203","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive optimal sliding mode control for three-phase voltage source inverter: Reinforcement learning approach
The operation of the three-phase standalone inverter is affected by many factors, such as heavy changes in load, unbalanced loads, nonlinear loads, system uncertainties and external disturbances. These are critical weaknesses for the control system of the three-phase inverter to reach robust optimal performance. This paper proposes an adaptive optimal sliding mode control (AOSMC) scheme for a three-phase nonlinear uncertain inverter. This AOSMC strategy solves the problems of nonlinear optimization by adaptive dynamic programming, one of the techniques of reinforcement learning, and overcomes the uncertainties and disturbance effects by a disturbance observer–based sliding mode controller. This algorithm uses only one neural network to approximate the critic; therefore, the burden of computation is significantly reduced. Both the weight matrix of the critic network and the disturbance observer are asymptotically stable. The overall system is guaranteed to be ultimately uniformly bounded stable via Lyapunov stable theory. The simulation is conducted to validate the insensitivity of the proposed AOSMC algorithm to working conditions. Also, the competitive results are presented to demonstrate the improvement of the proposed AOSMC scheme in comparison to some other existing controllers.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.