基于饱和-非饱和渗流理论的道路地堑边坡力学分析

Li Peijun, Lu Hao, Li Qing
{"title":"基于饱和-非饱和渗流理论的道路地堑边坡力学分析","authors":"Li Peijun, Lu Hao, Li Qing","doi":"10.13052/ejcm2642-2085.3234","DOIUrl":null,"url":null,"abstract":"As the construction of mountainous highways continues to heat up, the stability analysis of road graben slopes becomes one of the current research hotspots. In this paper, based on the saturated-unsaturated seepage theory, the force analysis of the road graben slope under rainfall conditions and its laws are studied. Firstly, the damage mode of the road graben slope and its three damage stages of creeping deformation, sliding damage and tendency to stability are summarized according to the engineering practice and literature survey, and the right side of the road graben slope from K316+439 to K316+859 of Longlian Expressway is monitored, so as to amend the next theoretical analysis. The three stages of rainfall infiltration were analyzed, the state variables and material variables of soil water were selected according to the continuous medium theory and the soil water suction analysis was carried out. Based on the saturated-unsaturated seepage theory, the fluid-structure interaction mathematical model and soil moisture characteristic curve (SWCC) model under rainfall infiltration conditions were established, and the stress of the cutting slope under saturation conditions was analyzed. The experimental results show that for the soil at the foot of the slope, the infiltration depth of rainfall is limited due to the low permeability coefficient, and the change of seepage field is not obvious; the longer the rainfall is held, the deeper the infiltration depth is, and the rainfall will continuously replenish the groundwater, so the force on the slope of the road graben will increase continuously and finally reach the limit of damage. When the rainfall intensity is 5mm-h-1, the decline of stability coefficient for 48 h is 0.121; the initial stability coefficient of the slope is the largest when the dip angle of the weak interlayer is equal to 25∘, and the stability coefficient decreases rapidly with the rainfall time, and when the rainfall reaches 60 h, the stability coefficient tends to be stable and the equilibrium of the slope force no longer changes.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"29 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Analysis of Road Graben Slopes Based on Saturated-Unsaturated Seepage Theory\",\"authors\":\"Li Peijun, Lu Hao, Li Qing\",\"doi\":\"10.13052/ejcm2642-2085.3234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the construction of mountainous highways continues to heat up, the stability analysis of road graben slopes becomes one of the current research hotspots. In this paper, based on the saturated-unsaturated seepage theory, the force analysis of the road graben slope under rainfall conditions and its laws are studied. Firstly, the damage mode of the road graben slope and its three damage stages of creeping deformation, sliding damage and tendency to stability are summarized according to the engineering practice and literature survey, and the right side of the road graben slope from K316+439 to K316+859 of Longlian Expressway is monitored, so as to amend the next theoretical analysis. The three stages of rainfall infiltration were analyzed, the state variables and material variables of soil water were selected according to the continuous medium theory and the soil water suction analysis was carried out. Based on the saturated-unsaturated seepage theory, the fluid-structure interaction mathematical model and soil moisture characteristic curve (SWCC) model under rainfall infiltration conditions were established, and the stress of the cutting slope under saturation conditions was analyzed. The experimental results show that for the soil at the foot of the slope, the infiltration depth of rainfall is limited due to the low permeability coefficient, and the change of seepage field is not obvious; the longer the rainfall is held, the deeper the infiltration depth is, and the rainfall will continuously replenish the groundwater, so the force on the slope of the road graben will increase continuously and finally reach the limit of damage. When the rainfall intensity is 5mm-h-1, the decline of stability coefficient for 48 h is 0.121; the initial stability coefficient of the slope is the largest when the dip angle of the weak interlayer is equal to 25∘, and the stability coefficient decreases rapidly with the rainfall time, and when the rainfall reaches 60 h, the stability coefficient tends to be stable and the equilibrium of the slope force no longer changes.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ejcm2642-2085.3234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

随着山地公路建设的不断升温,公路地堑边坡的稳定性分析成为当前的研究热点之一。本文基于饱和-非饱和渗流理论,研究了降雨条件下道路地堑边坡的受力分析及其规律。首先,根据工程实践和文献调查,总结了道路地堑边坡的破坏模式及其蠕变变形、滑动破坏和趋于稳定三个破坏阶段,并对龙莲高速公路K316+439 ~ K316+859路段的道路地堑边坡右侧进行了监测,以修正下一步的理论分析。对降雨入渗的三个阶段进行了分析,根据连续介质理论选取了土壤水分的状态变量和物质变量,并进行了土壤吸力分析。基于饱和-非饱和渗流理论,建立了降雨入渗条件下的流固耦合数学模型和土壤水分特征曲线(SWCC)模型,分析了饱和条件下路堑边坡的应力。试验结果表明:对于坡脚下的土壤,由于渗透系数低,降雨的入渗深度受到限制,渗流场变化不明显;降雨保持的时间越长,入渗深度越深,降雨会不断补充地下水,所以作用在道路地堑边坡上的力会不断增大,最终达到破坏的极限。当降雨强度为5mm-h-1时,48 h稳定系数下降幅度为0.121;当弱夹层倾角等于25°时,边坡的初始稳定系数最大,稳定系数随降雨时间迅速减小,当降雨达到60 h时,稳定系数趋于稳定,边坡力的平衡不再改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Analysis of Road Graben Slopes Based on Saturated-Unsaturated Seepage Theory
As the construction of mountainous highways continues to heat up, the stability analysis of road graben slopes becomes one of the current research hotspots. In this paper, based on the saturated-unsaturated seepage theory, the force analysis of the road graben slope under rainfall conditions and its laws are studied. Firstly, the damage mode of the road graben slope and its three damage stages of creeping deformation, sliding damage and tendency to stability are summarized according to the engineering practice and literature survey, and the right side of the road graben slope from K316+439 to K316+859 of Longlian Expressway is monitored, so as to amend the next theoretical analysis. The three stages of rainfall infiltration were analyzed, the state variables and material variables of soil water were selected according to the continuous medium theory and the soil water suction analysis was carried out. Based on the saturated-unsaturated seepage theory, the fluid-structure interaction mathematical model and soil moisture characteristic curve (SWCC) model under rainfall infiltration conditions were established, and the stress of the cutting slope under saturation conditions was analyzed. The experimental results show that for the soil at the foot of the slope, the infiltration depth of rainfall is limited due to the low permeability coefficient, and the change of seepage field is not obvious; the longer the rainfall is held, the deeper the infiltration depth is, and the rainfall will continuously replenish the groundwater, so the force on the slope of the road graben will increase continuously and finally reach the limit of damage. When the rainfall intensity is 5mm-h-1, the decline of stability coefficient for 48 h is 0.121; the initial stability coefficient of the slope is the largest when the dip angle of the weak interlayer is equal to 25∘, and the stability coefficient decreases rapidly with the rainfall time, and when the rainfall reaches 60 h, the stability coefficient tends to be stable and the equilibrium of the slope force no longer changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
期刊最新文献
Evaluation of Piezoelectric-based Composite for Actuator Application via FEM with Thermal Analogy Vortex and Core Detection using Computer Vision and Machine Learning Methods The Impact of Flexural/Torsional Coupling on the Stability of Symmetrical Laminated Plates Static Mechanics and Dynamic Analysis and Control of Bridge Structures Under Multi-Load Coupling Effects Analysis of the Mechanical Characteristics of Tunnels Under the Coupling Effect of Submarine Active Faults and Ground Vibrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1