非标准内直齿轮组的磨损与效率研究

R Ravivarman, R Prabhu Sekar
{"title":"非标准内直齿轮组的磨损与效率研究","authors":"R Ravivarman, R Prabhu Sekar","doi":"10.1177/13506501231205172","DOIUrl":null,"url":null,"abstract":"In this research, a finite-element model of internal gear drives with different tooth thickness factors (non-standard gear drives) is generated in order to investigate their performance characteristics. The finite-element analysis includes a focused mixture of non-standard internal gear set under enhanced bending and contact strength conditions for an accurate assessment of wear and efficiency. The analysis comprised gear sets having higher bending strength compared to the conditions in the standard internal gear drive to evaluate the tooth wear and its efficiency. A state-of-the-art semi-analytical nonlinear contact mechanics construction is executed to model a non-standard internal gear transmission unit. The tooth thickness of the non-standard internal gear is varied concerning the stresses and is quantified as a function. The computed results also extended with internal gear sets at varying operating parameters. The results evidently specify that power loss decreases with the proper combination of operating parameters. The results are presented and strategies concerning the design of a non-standard internal gear are also deliberated.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"1 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation of the wear and efficiency in non-standard internal spur gear set\",\"authors\":\"R Ravivarman, R Prabhu Sekar\",\"doi\":\"10.1177/13506501231205172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a finite-element model of internal gear drives with different tooth thickness factors (non-standard gear drives) is generated in order to investigate their performance characteristics. The finite-element analysis includes a focused mixture of non-standard internal gear set under enhanced bending and contact strength conditions for an accurate assessment of wear and efficiency. The analysis comprised gear sets having higher bending strength compared to the conditions in the standard internal gear drive to evaluate the tooth wear and its efficiency. A state-of-the-art semi-analytical nonlinear contact mechanics construction is executed to model a non-standard internal gear transmission unit. The tooth thickness of the non-standard internal gear is varied concerning the stresses and is quantified as a function. The computed results also extended with internal gear sets at varying operating parameters. The results evidently specify that power loss decreases with the proper combination of operating parameters. The results are presented and strategies concerning the design of a non-standard internal gear are also deliberated.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231205172\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501231205172","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了研究不同齿厚因子的内齿轮传动(非标准齿轮传动)的性能特性,建立了内齿轮传动的有限元模型。有限元分析包括在增强弯曲和接触强度条件下的非标准内齿轮组的集中混合,以准确评估磨损和效率。该分析包括与标准内齿轮传动条件相比具有更高抗弯强度的齿轮组,以评估齿磨损及其效率。采用最先进的半解析非线性接触力学构造对非标准内齿轮传动单元进行建模。非标准内齿轮的齿厚随应力的变化而变化,并作为函数进行量化。计算结果还扩展了不同工作参数下的内齿轮组。结果表明,合理的运行参数组合可以降低功率损耗。给出了研究结果,并对非标准内齿轮的设计策略进行了探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An investigation of the wear and efficiency in non-standard internal spur gear set
In this research, a finite-element model of internal gear drives with different tooth thickness factors (non-standard gear drives) is generated in order to investigate their performance characteristics. The finite-element analysis includes a focused mixture of non-standard internal gear set under enhanced bending and contact strength conditions for an accurate assessment of wear and efficiency. The analysis comprised gear sets having higher bending strength compared to the conditions in the standard internal gear drive to evaluate the tooth wear and its efficiency. A state-of-the-art semi-analytical nonlinear contact mechanics construction is executed to model a non-standard internal gear transmission unit. The tooth thickness of the non-standard internal gear is varied concerning the stresses and is quantified as a function. The computed results also extended with internal gear sets at varying operating parameters. The results evidently specify that power loss decreases with the proper combination of operating parameters. The results are presented and strategies concerning the design of a non-standard internal gear are also deliberated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Investigation of nanoparticle diameter influences on performance of hydrodynamic journal bearings operating with nanolubricant Effects of a typical shear dependent viscosity on analytical elastohydrodynamic lubrication film thickness predictions: A critical issue for the classical approach Research progress of surface texturing to improve the tribological properties: A review Study of the effect of laser textured rotors on the starting performance of metal–rubber mating pairs under different lubricating media environments Hybrid lubrication model study of slip ring combination seal under the influence of frictional heat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1