{"title":"重症监护病房患者肺炎克雷伯菌分离株的广谱β -内酰胺酶基因","authors":"Reyhaneh Taheri Tinjani, Milad Sabaei, Fatemeh Shamlou Mahmoudi, Soheil Rahmani Fard, Seyyed Khalil Shokouhi Mostafavi, Leyla Bahadorizadeh, Sara Minaeian","doi":"10.5812/jjm-140497","DOIUrl":null,"url":null,"abstract":"Background: Drug-resistant hospital-acquired infections (HAIs) are a growing concern in modern medicine throughout the world. Klebsiella pneumoniae is one of the most prominent causative agents of multidrug-resistant nosocomial infections. It is also widely recognized for having a high resistance level to many antibiotic classes, particularly beta-lactams. Carbapenemase-producing K. pneumoniae has been identified as a major global cause of HAIs with adverse clinical outcomes. Therefore, it is of the utmost importance to have an in-depth understanding of the antimicrobial resistance (AMR) genetic determinants of this bacterium to stop the spread of highly resistant K. pneumoniae in healthcare facilities and the resulting patient morbidity and mortality. Objectives: This study aimed to investigate the AMR pattern of K. pneumoniae isolates obtained from intensive care units (ICUs), with a focus on extended-spectrum beta-lactamases (ESBLs) genes blaCTX-M, blaGES, and blaIMP. Methods: A total of 105 K. pneumoniae isolates obtained from the sputum samples of ICU patients were identified and confirmed using standard microbiological tests and 16S rRNA polymerase chain reaction (PCR). The antibiotic susceptibility test was performed for all the isolates. The presence of ESBL genes was determined phenotypically and by PCR. Results: The highest level of resistance was observed against ceftazidime (100%), cefotaxime (99%), and imipenem (93.3%). Approximately 87.6% and 39% of the isolates were sensitive to colistin and gentamicin, respectively. Phenotypic ESBL production was observed in 16 isolates, and the prevalence of blaCTX-M was 86.7%. No blaGES and blaIMP genes were detected. Conclusions: Periodic investigation of AMR-mediating genes is essential due to the high prevalence of ESBL genes in HAIs. The presence of other ESBL genes needs to be investigated for a more accurate understanding of the AMR status of K. pneumoniae in healthcare settings.","PeriodicalId":17803,"journal":{"name":"Jundishapur Journal of Microbiology","volume":"2 2","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended-Spectrum Beta-Lactamases Genes in Klebsiella pneumoniae Isolates Obtained from Patients in Intensive Care Units\",\"authors\":\"Reyhaneh Taheri Tinjani, Milad Sabaei, Fatemeh Shamlou Mahmoudi, Soheil Rahmani Fard, Seyyed Khalil Shokouhi Mostafavi, Leyla Bahadorizadeh, Sara Minaeian\",\"doi\":\"10.5812/jjm-140497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Drug-resistant hospital-acquired infections (HAIs) are a growing concern in modern medicine throughout the world. Klebsiella pneumoniae is one of the most prominent causative agents of multidrug-resistant nosocomial infections. It is also widely recognized for having a high resistance level to many antibiotic classes, particularly beta-lactams. Carbapenemase-producing K. pneumoniae has been identified as a major global cause of HAIs with adverse clinical outcomes. Therefore, it is of the utmost importance to have an in-depth understanding of the antimicrobial resistance (AMR) genetic determinants of this bacterium to stop the spread of highly resistant K. pneumoniae in healthcare facilities and the resulting patient morbidity and mortality. Objectives: This study aimed to investigate the AMR pattern of K. pneumoniae isolates obtained from intensive care units (ICUs), with a focus on extended-spectrum beta-lactamases (ESBLs) genes blaCTX-M, blaGES, and blaIMP. Methods: A total of 105 K. pneumoniae isolates obtained from the sputum samples of ICU patients were identified and confirmed using standard microbiological tests and 16S rRNA polymerase chain reaction (PCR). The antibiotic susceptibility test was performed for all the isolates. The presence of ESBL genes was determined phenotypically and by PCR. Results: The highest level of resistance was observed against ceftazidime (100%), cefotaxime (99%), and imipenem (93.3%). Approximately 87.6% and 39% of the isolates were sensitive to colistin and gentamicin, respectively. Phenotypic ESBL production was observed in 16 isolates, and the prevalence of blaCTX-M was 86.7%. No blaGES and blaIMP genes were detected. Conclusions: Periodic investigation of AMR-mediating genes is essential due to the high prevalence of ESBL genes in HAIs. The presence of other ESBL genes needs to be investigated for a more accurate understanding of the AMR status of K. pneumoniae in healthcare settings.\",\"PeriodicalId\":17803,\"journal\":{\"name\":\"Jundishapur Journal of Microbiology\",\"volume\":\"2 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jundishapur Journal of Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/jjm-140497\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/jjm-140497","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Extended-Spectrum Beta-Lactamases Genes in Klebsiella pneumoniae Isolates Obtained from Patients in Intensive Care Units
Background: Drug-resistant hospital-acquired infections (HAIs) are a growing concern in modern medicine throughout the world. Klebsiella pneumoniae is one of the most prominent causative agents of multidrug-resistant nosocomial infections. It is also widely recognized for having a high resistance level to many antibiotic classes, particularly beta-lactams. Carbapenemase-producing K. pneumoniae has been identified as a major global cause of HAIs with adverse clinical outcomes. Therefore, it is of the utmost importance to have an in-depth understanding of the antimicrobial resistance (AMR) genetic determinants of this bacterium to stop the spread of highly resistant K. pneumoniae in healthcare facilities and the resulting patient morbidity and mortality. Objectives: This study aimed to investigate the AMR pattern of K. pneumoniae isolates obtained from intensive care units (ICUs), with a focus on extended-spectrum beta-lactamases (ESBLs) genes blaCTX-M, blaGES, and blaIMP. Methods: A total of 105 K. pneumoniae isolates obtained from the sputum samples of ICU patients were identified and confirmed using standard microbiological tests and 16S rRNA polymerase chain reaction (PCR). The antibiotic susceptibility test was performed for all the isolates. The presence of ESBL genes was determined phenotypically and by PCR. Results: The highest level of resistance was observed against ceftazidime (100%), cefotaxime (99%), and imipenem (93.3%). Approximately 87.6% and 39% of the isolates were sensitive to colistin and gentamicin, respectively. Phenotypic ESBL production was observed in 16 isolates, and the prevalence of blaCTX-M was 86.7%. No blaGES and blaIMP genes were detected. Conclusions: Periodic investigation of AMR-mediating genes is essential due to the high prevalence of ESBL genes in HAIs. The presence of other ESBL genes needs to be investigated for a more accurate understanding of the AMR status of K. pneumoniae in healthcare settings.
期刊介绍:
Jundishapur Journal of Microbiology, (JJM) is the official scientific Monthly publication of Ahvaz Jundishapur University of Medical Sciences. JJM is dedicated to the publication of manuscripts on topics concerning all aspects of microbiology. The topics include medical, veterinary and environmental microbiology, molecular investigations and infectious diseases. Aspects of immunology and epidemiology of infectious diseases are also considered.