泡沫弹性行为中尺寸效应的符号问题

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Elasticity Pub Date : 2023-10-06 DOI:10.1007/s10659-023-10037-6
Stephan Kirchhof, Alfons Ams, Geralf Hütter
{"title":"泡沫弹性行为中尺寸效应的符号问题","authors":"Stephan Kirchhof, Alfons Ams, Geralf Hütter","doi":"10.1007/s10659-023-10037-6","DOIUrl":null,"url":null,"abstract":"Abstract Due to their good ratio of stiffness and strength to weight, foam materials find use in lightweight engineering. Though, in many applications like structural bending or tension, the scale separation between macroscopic structure and the foam’s mesostructure like cells size, is relatively weak and the mechanical properties of the foam appear to be size dependent. Positive as well as negative size effects have been observed for certain basic tests of foams, i.e., the material appears either to be more compliant or stiffer than would be expected from larger specimens. Performing tests with sufficiently small specimens is challenging as any disturbances from damage of cell walls during sample preparation or from loading devices must be avoided. Correspondingly, the number of respective data in literature is relatively low and the results are partly contradictory. In order to avoid the problems from sample preparation or bearings, the present study employs virtual tests with CT data of real medium-density ceramic foams. A number of samples of different size is “cut” from the resulting voxel data. Subsequently, the apparent elastic properties of each virtual sample are “measured” directly by a free vibrational analysis using finite cell method, thereby avoiding any disturbances from load application or bearings. The results exhibit a large scatter of the apparent moduli per sample size, but with a clear negative size effect in all investigated basic modes of deformation (bending, torsion, uniaxial). Finally, the results are compared qualitatively and quantitatively to available experimental data from literature, yielding common trends as well as open questions.","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Question of the Sign of Size Effects in the Elastic Behavior of Foams\",\"authors\":\"Stephan Kirchhof, Alfons Ams, Geralf Hütter\",\"doi\":\"10.1007/s10659-023-10037-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Due to their good ratio of stiffness and strength to weight, foam materials find use in lightweight engineering. Though, in many applications like structural bending or tension, the scale separation between macroscopic structure and the foam’s mesostructure like cells size, is relatively weak and the mechanical properties of the foam appear to be size dependent. Positive as well as negative size effects have been observed for certain basic tests of foams, i.e., the material appears either to be more compliant or stiffer than would be expected from larger specimens. Performing tests with sufficiently small specimens is challenging as any disturbances from damage of cell walls during sample preparation or from loading devices must be avoided. Correspondingly, the number of respective data in literature is relatively low and the results are partly contradictory. In order to avoid the problems from sample preparation or bearings, the present study employs virtual tests with CT data of real medium-density ceramic foams. A number of samples of different size is “cut” from the resulting voxel data. Subsequently, the apparent elastic properties of each virtual sample are “measured” directly by a free vibrational analysis using finite cell method, thereby avoiding any disturbances from load application or bearings. The results exhibit a large scatter of the apparent moduli per sample size, but with a clear negative size effect in all investigated basic modes of deformation (bending, torsion, uniaxial). Finally, the results are compared qualitatively and quantitatively to available experimental data from literature, yielding common trends as well as open questions.\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10659-023-10037-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10659-023-10037-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

泡沫材料由于具有良好的刚度和强度重量比,在轻量化工程中得到了广泛的应用。然而,在许多应用中,如结构弯曲或拉伸,宏观结构和泡沫的细观结构(如细胞大小)之间的尺度分离相对较弱,泡沫的机械性能似乎与尺寸有关。在泡沫的某些基本试验中,已观察到正尺寸效应和负尺寸效应,即材料似乎比较大的试样更柔顺或更硬。用足够小的样品进行测试是具有挑战性的,因为在样品制备过程中必须避免细胞壁损伤或加载装置造成的任何干扰。相应的,文献中各自的数据数量相对较少,结果部分矛盾。为了避免样品制备或轴承问题,本研究采用真实中密度泡沫陶瓷的CT数据进行虚拟测试。从生成的体素数据中“切割”出许多不同大小的样本。随后,通过使用有限单元法的自由振动分析直接“测量”每个虚拟样品的表观弹性特性,从而避免了负载应用或轴承的任何干扰。结果显示,每个样品尺寸的表观模量有很大的分散,但在所有研究的基本变形模式(弯曲、扭转、单轴)中都有明显的负尺寸效应。最后,将结果定性和定量地与文献中可用的实验数据进行比较,得出共同的趋势以及开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Question of the Sign of Size Effects in the Elastic Behavior of Foams
Abstract Due to their good ratio of stiffness and strength to weight, foam materials find use in lightweight engineering. Though, in many applications like structural bending or tension, the scale separation between macroscopic structure and the foam’s mesostructure like cells size, is relatively weak and the mechanical properties of the foam appear to be size dependent. Positive as well as negative size effects have been observed for certain basic tests of foams, i.e., the material appears either to be more compliant or stiffer than would be expected from larger specimens. Performing tests with sufficiently small specimens is challenging as any disturbances from damage of cell walls during sample preparation or from loading devices must be avoided. Correspondingly, the number of respective data in literature is relatively low and the results are partly contradictory. In order to avoid the problems from sample preparation or bearings, the present study employs virtual tests with CT data of real medium-density ceramic foams. A number of samples of different size is “cut” from the resulting voxel data. Subsequently, the apparent elastic properties of each virtual sample are “measured” directly by a free vibrational analysis using finite cell method, thereby avoiding any disturbances from load application or bearings. The results exhibit a large scatter of the apparent moduli per sample size, but with a clear negative size effect in all investigated basic modes of deformation (bending, torsion, uniaxial). Finally, the results are compared qualitatively and quantitatively to available experimental data from literature, yielding common trends as well as open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
期刊最新文献
Initial Stresses in a Twisted Porous Fluid-Saturated Cylinder New Perspectives on Torsional Rigidity and Polynomial Approximations of z-bar A Morphoelastic Shell Theory of Biological Invagination in Embryos A Direct Approach to the Polar Representation of Plane Tensors The Micro-Bond Potential and Stress Tensor in Peridynamics Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1