基于贝叶斯神经网络的多拐角模拟电路成品率优化:提高环境变化下电路的可靠性

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Design Automation of Electronic Systems Pub Date : 2023-10-06 DOI:10.1145/3626321
Nanlin Guo, Fulin Peng, Jiahe Shi, Fan Yang, Jun Tao, Xuan Zeng
{"title":"基于贝叶斯神经网络的多拐角模拟电路成品率优化:提高环境变化下电路的可靠性","authors":"Nanlin Guo, Fulin Peng, Jiahe Shi, Fan Yang, Jun Tao, Xuan Zeng","doi":"10.1145/3626321","DOIUrl":null,"url":null,"abstract":"The reliability of circuits is significantly affected by process variations in manufacturing and environmental variation during operation. Current yield optimization algorithms take process variations into consideration to improve circuit reliability. However, the influence of environmental variations (e.g., voltage and temperature variations) is often ignored in current methods because of the high computational cost. In this paper, a novel and efficient approach named BNN-BYO is proposed to optimize the yield of analog circuits in multiple environmental corners. First, we use a Bayesian Neural Network (BNN) to simultaneously model the yields and POIs in multiple corners efficiently. Next, the multi-corner yield optimization can be performed by embedding BNN into Bayesian optimization framework. Since the correlation among yields and POIs in different corners is implicitly encoded in the BNN model, it provides great modeling capabilities for yields and their uncertainties to improve the efficiency of yield optimization. Our experimental results demonstrate that the proposed method can save up to 45.3% of simulation cost compared to other baseline methods to achieve the same target yield. In addition, for the same simulation cost, our proposed method can find better design points with 3.2% yield improvement.","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yield Optimization for Analog Circuits over Multiple Corners via Bayesian Neural Network: Enhancing Circuit Reliability under Environmental Variation\",\"authors\":\"Nanlin Guo, Fulin Peng, Jiahe Shi, Fan Yang, Jun Tao, Xuan Zeng\",\"doi\":\"10.1145/3626321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability of circuits is significantly affected by process variations in manufacturing and environmental variation during operation. Current yield optimization algorithms take process variations into consideration to improve circuit reliability. However, the influence of environmental variations (e.g., voltage and temperature variations) is often ignored in current methods because of the high computational cost. In this paper, a novel and efficient approach named BNN-BYO is proposed to optimize the yield of analog circuits in multiple environmental corners. First, we use a Bayesian Neural Network (BNN) to simultaneously model the yields and POIs in multiple corners efficiently. Next, the multi-corner yield optimization can be performed by embedding BNN into Bayesian optimization framework. Since the correlation among yields and POIs in different corners is implicitly encoded in the BNN model, it provides great modeling capabilities for yields and their uncertainties to improve the efficiency of yield optimization. Our experimental results demonstrate that the proposed method can save up to 45.3% of simulation cost compared to other baseline methods to achieve the same target yield. In addition, for the same simulation cost, our proposed method can find better design points with 3.2% yield improvement.\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626321\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626321","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

电路的可靠性受到制造过程中的工艺变化和运行过程中的环境变化的显著影响。目前的良率优化算法考虑了工艺变化,以提高电路的可靠性。然而,由于计算成本高,目前的方法往往忽略了环境变化(例如电压和温度变化)的影响。本文提出了一种新颖有效的方法BNN-BYO,用于优化模拟电路在多环境角的良率。首先,利用贝叶斯神经网络(BNN)对多个角点的产量和poi同时进行高效建模;然后,将BNN嵌入到贝叶斯优化框架中,进行多拐角良率优化。由于在BNN模型中隐式编码了产量与不同角点poi之间的相关性,为产量及其不确定性提供了强大的建模能力,提高了产量优化效率。实验结果表明,在达到相同目标良率的情况下,与其他基准方法相比,该方法可节省高达45.3%的仿真成本。此外,在相同的仿真成本下,我们提出的方法可以找到更好的设计点,良率提高3.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yield Optimization for Analog Circuits over Multiple Corners via Bayesian Neural Network: Enhancing Circuit Reliability under Environmental Variation
The reliability of circuits is significantly affected by process variations in manufacturing and environmental variation during operation. Current yield optimization algorithms take process variations into consideration to improve circuit reliability. However, the influence of environmental variations (e.g., voltage and temperature variations) is often ignored in current methods because of the high computational cost. In this paper, a novel and efficient approach named BNN-BYO is proposed to optimize the yield of analog circuits in multiple environmental corners. First, we use a Bayesian Neural Network (BNN) to simultaneously model the yields and POIs in multiple corners efficiently. Next, the multi-corner yield optimization can be performed by embedding BNN into Bayesian optimization framework. Since the correlation among yields and POIs in different corners is implicitly encoded in the BNN model, it provides great modeling capabilities for yields and their uncertainties to improve the efficiency of yield optimization. Our experimental results demonstrate that the proposed method can save up to 45.3% of simulation cost compared to other baseline methods to achieve the same target yield. In addition, for the same simulation cost, our proposed method can find better design points with 3.2% yield improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
期刊最新文献
Efficient Attacks on Strong PUFs via Covariance and Boolean Modeling PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication Multi-Stream Scheduling of Inference Pipelines on Edge Devices - a DRL Approach A Power Optimization Approach for Large-scale RM-TB Dual Logic Circuits Based on an Adaptive Multi-Task Intelligent Algorithm MAB-BMC: A Formal Verification Enhancer by Harnessing Multiple BMC Engines Together
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1