双风机在线运行的CFD模拟

IF 0.9 4区 工程技术 Q4 ENGINEERING, CIVIL International Journal of Offshore and Polar Engineering Pub Date : 2023-09-01 DOI:10.17736/ijope.2023.jc908
Maokun Ye, Hamn-Ching Chen, Arjen Koop
{"title":"双风机在线运行的CFD模拟","authors":"Maokun Ye, Hamn-Ching Chen, Arjen Koop","doi":"10.17736/ijope.2023.jc908","DOIUrl":null,"url":null,"abstract":"Generally, the wake behind a wind turbine is characterized as a reduction in wind velocity and an increase in turbulence level compared to the free stream condition. In wind farms where wind turbines are grouped in arrays, under unfavorable conditions, downstream wind turbines will operate in the wakes of upstream turbines, and thus will harm the overall efficiency of wind farms. Accurately predicting the performance of downstream turbines and the interactions between multiple turbine wakes are crucial to the design of more efficient wind farms because it forms the cornerstone of wind farm layout optimization algorithms. In the present study, we perform CFD simulations for the NTNU Blind Test 2 experiment in which two turbines were placed in a closed-loop wind tunnel and operating in line. The Reynolds-Averaged Navier Stokes (RANS) equations with the k-ω SST turbulence model are adopted in the simulations. For each of the two wind turbines, geometries including the blades, hub, nacelle, and tower are fully resolved. The Moving-Grid-Formulation (MVG) approach with a sliding interface technique is leveraged to handle the relative motion between the rotating and stationary portions of the wind turbines. In the simulations, the values of tip-speed ratio (TSR) for the upstream and downstream turbines are 4 and 6, respectively. The CFD-predicted thrust and power coefficients are obtained under an inlet velocity of 10 m/s and are compared against the experiment results. In addition, the wake structures of the two wind turbines are also visualized and discussed.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CFD Simulations of Two Wind Turbines Operating in Line\",\"authors\":\"Maokun Ye, Hamn-Ching Chen, Arjen Koop\",\"doi\":\"10.17736/ijope.2023.jc908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, the wake behind a wind turbine is characterized as a reduction in wind velocity and an increase in turbulence level compared to the free stream condition. In wind farms where wind turbines are grouped in arrays, under unfavorable conditions, downstream wind turbines will operate in the wakes of upstream turbines, and thus will harm the overall efficiency of wind farms. Accurately predicting the performance of downstream turbines and the interactions between multiple turbine wakes are crucial to the design of more efficient wind farms because it forms the cornerstone of wind farm layout optimization algorithms. In the present study, we perform CFD simulations for the NTNU Blind Test 2 experiment in which two turbines were placed in a closed-loop wind tunnel and operating in line. The Reynolds-Averaged Navier Stokes (RANS) equations with the k-ω SST turbulence model are adopted in the simulations. For each of the two wind turbines, geometries including the blades, hub, nacelle, and tower are fully resolved. The Moving-Grid-Formulation (MVG) approach with a sliding interface technique is leveraged to handle the relative motion between the rotating and stationary portions of the wind turbines. In the simulations, the values of tip-speed ratio (TSR) for the upstream and downstream turbines are 4 and 6, respectively. The CFD-predicted thrust and power coefficients are obtained under an inlet velocity of 10 m/s and are compared against the experiment results. In addition, the wake structures of the two wind turbines are also visualized and discussed.\",\"PeriodicalId\":50302,\"journal\":{\"name\":\"International Journal of Offshore and Polar Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Offshore and Polar Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17736/ijope.2023.jc908\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17736/ijope.2023.jc908","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFD Simulations of Two Wind Turbines Operating in Line
Generally, the wake behind a wind turbine is characterized as a reduction in wind velocity and an increase in turbulence level compared to the free stream condition. In wind farms where wind turbines are grouped in arrays, under unfavorable conditions, downstream wind turbines will operate in the wakes of upstream turbines, and thus will harm the overall efficiency of wind farms. Accurately predicting the performance of downstream turbines and the interactions between multiple turbine wakes are crucial to the design of more efficient wind farms because it forms the cornerstone of wind farm layout optimization algorithms. In the present study, we perform CFD simulations for the NTNU Blind Test 2 experiment in which two turbines were placed in a closed-loop wind tunnel and operating in line. The Reynolds-Averaged Navier Stokes (RANS) equations with the k-ω SST turbulence model are adopted in the simulations. For each of the two wind turbines, geometries including the blades, hub, nacelle, and tower are fully resolved. The Moving-Grid-Formulation (MVG) approach with a sliding interface technique is leveraged to handle the relative motion between the rotating and stationary portions of the wind turbines. In the simulations, the values of tip-speed ratio (TSR) for the upstream and downstream turbines are 4 and 6, respectively. The CFD-predicted thrust and power coefficients are obtained under an inlet velocity of 10 m/s and are compared against the experiment results. In addition, the wake structures of the two wind turbines are also visualized and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Offshore and Polar Engineering
International Journal of Offshore and Polar Engineering ENGINEERING, CIVIL-ENGINEERING, OCEAN
CiteScore
2.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world. Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.
期刊最新文献
Comparison of Motions for Intact and Damaged Ships in Head Waves Behavior Analysis of Cavitation Jets for Effective Removal of Organisms Attached to Offshore Structures Response and Power Absorption Assessment of the TALOS Wave Energy Converter in Time Domain Hybrid Method for Large Diameter Spool Vortex-Induced and Flow-Induced Vibration Analysis Simplified Design Formula for Tensile Axial Strain of Buried Pipeline Subjected to a Liquefaction-Induced Lateral Landslide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1