Hui Gao , Zhichao Qiu , Xuan Wang , Xiyuan Zhang , Yujia Zhang , Junbiao Dai , Zhuobin Liang
{"title":"大肠杆菌基因组规模工程研究进展及其应用","authors":"Hui Gao , Zhichao Qiu , Xuan Wang , Xiyuan Zhang , Yujia Zhang , Junbiao Dai , Zhuobin Liang","doi":"10.1016/j.engmic.2023.100115","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to the rapid advancement of genome engineering technologies, the scale of genome engineering has expanded dramatically. Genome editing has progressed from one genomic alteration at a time that could only be employed in few species, to the simultaneous generation of multiple modifications across many genomic loci in numerous species. The development and recent advances in multiplex automated genome engineering (MAGE)-associated technologies and clustered regularly interspaced short palindromic repeats and their associated protein (CRISPR-Cas)-based approaches, together with genome-scale synthesis technologies offer unprecedented opportunities for advancing genome-scale engineering in a broader range. These approaches provide new tools to generate strains with desired phenotypes, understand the complexity of biological systems, and directly evolve a genome with novel features. Here, we review the recent major advances in genome-scale engineering tools developed for <em>Escherichia coli</em>, focusing on their applications in identifying essential genes, genome reduction, recoding, and beyond.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 1","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370323000474/pdfft?md5=967c43434767d6e9eae7f04f34e86a01&pid=1-s2.0-S2667370323000474-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in genome-scale engineering in Escherichia coli and their applications\",\"authors\":\"Hui Gao , Zhichao Qiu , Xuan Wang , Xiyuan Zhang , Yujia Zhang , Junbiao Dai , Zhuobin Liang\",\"doi\":\"10.1016/j.engmic.2023.100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Owing to the rapid advancement of genome engineering technologies, the scale of genome engineering has expanded dramatically. Genome editing has progressed from one genomic alteration at a time that could only be employed in few species, to the simultaneous generation of multiple modifications across many genomic loci in numerous species. The development and recent advances in multiplex automated genome engineering (MAGE)-associated technologies and clustered regularly interspaced short palindromic repeats and their associated protein (CRISPR-Cas)-based approaches, together with genome-scale synthesis technologies offer unprecedented opportunities for advancing genome-scale engineering in a broader range. These approaches provide new tools to generate strains with desired phenotypes, understand the complexity of biological systems, and directly evolve a genome with novel features. Here, we review the recent major advances in genome-scale engineering tools developed for <em>Escherichia coli</em>, focusing on their applications in identifying essential genes, genome reduction, recoding, and beyond.</p></div>\",\"PeriodicalId\":100478,\"journal\":{\"name\":\"Engineering Microbiology\",\"volume\":\"4 1\",\"pages\":\"Article 100115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667370323000474/pdfft?md5=967c43434767d6e9eae7f04f34e86a01&pid=1-s2.0-S2667370323000474-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667370323000474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370323000474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances in genome-scale engineering in Escherichia coli and their applications
Owing to the rapid advancement of genome engineering technologies, the scale of genome engineering has expanded dramatically. Genome editing has progressed from one genomic alteration at a time that could only be employed in few species, to the simultaneous generation of multiple modifications across many genomic loci in numerous species. The development and recent advances in multiplex automated genome engineering (MAGE)-associated technologies and clustered regularly interspaced short palindromic repeats and their associated protein (CRISPR-Cas)-based approaches, together with genome-scale synthesis technologies offer unprecedented opportunities for advancing genome-scale engineering in a broader range. These approaches provide new tools to generate strains with desired phenotypes, understand the complexity of biological systems, and directly evolve a genome with novel features. Here, we review the recent major advances in genome-scale engineering tools developed for Escherichia coli, focusing on their applications in identifying essential genes, genome reduction, recoding, and beyond.