氧缺陷调节二氧化钛中的电荷行为以提高光催化固氮性能

Mengxia Ji , Nianhua Liu , Kai Li , Qing Xu , Gaopeng Liu , Bin Wang , Jun Di , Huaming Li , Jiexiang Xia
{"title":"氧缺陷调节二氧化钛中的电荷行为以提高光催化固氮性能","authors":"Mengxia Ji ,&nbsp;Nianhua Liu ,&nbsp;Kai Li ,&nbsp;Qing Xu ,&nbsp;Gaopeng Liu ,&nbsp;Bin Wang ,&nbsp;Jun Di ,&nbsp;Huaming Li ,&nbsp;Jiexiang Xia","doi":"10.1016/j.matre.2023.100231","DOIUrl":null,"url":null,"abstract":"<div><p>Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions. Photocatalytic technology is a potential solution to convert N<sub>2</sub> to ammonia. However, the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology. Herein, a facile synthesis of anatase TiO<sub>2</sub> nanosheets with an abundance of surface oxygen vacancies (TiO<sub>2</sub>-OV) via the calcination treatment was reported. Photocatalytic experiments of the prepared anatase TiO<sub>2</sub> samples showed that TiO<sub>2</sub>-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N<sub>2</sub> fixation in pure water, without adding any sacrificial agents. EPR, XPS, XRD, UV-Vis DRS, TEM, Raman, and PL techniques were employed to systematically explore the possible enhanced mechanism. Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region, decreased the adsorption and activation barriers of inert N<sub>2</sub>, and improved the separation and transfer efficiency of the photogenerated electron-hole pairs. Thus, a high rate of ammonia evolution in TiO<sub>2</sub>-OV was realized. This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"3 4","pages":"Article 100231"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935823000915/pdfft?md5=a18c005c2ef47ea26a2bcaea63fe4912&pid=1-s2.0-S2666935823000915-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance\",\"authors\":\"Mengxia Ji ,&nbsp;Nianhua Liu ,&nbsp;Kai Li ,&nbsp;Qing Xu ,&nbsp;Gaopeng Liu ,&nbsp;Bin Wang ,&nbsp;Jun Di ,&nbsp;Huaming Li ,&nbsp;Jiexiang Xia\",\"doi\":\"10.1016/j.matre.2023.100231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions. Photocatalytic technology is a potential solution to convert N<sub>2</sub> to ammonia. However, the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology. Herein, a facile synthesis of anatase TiO<sub>2</sub> nanosheets with an abundance of surface oxygen vacancies (TiO<sub>2</sub>-OV) via the calcination treatment was reported. Photocatalytic experiments of the prepared anatase TiO<sub>2</sub> samples showed that TiO<sub>2</sub>-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N<sub>2</sub> fixation in pure water, without adding any sacrificial agents. EPR, XPS, XRD, UV-Vis DRS, TEM, Raman, and PL techniques were employed to systematically explore the possible enhanced mechanism. Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region, decreased the adsorption and activation barriers of inert N<sub>2</sub>, and improved the separation and transfer efficiency of the photogenerated electron-hole pairs. Thus, a high rate of ammonia evolution in TiO<sub>2</sub>-OV was realized. This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"3 4\",\"pages\":\"Article 100231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666935823000915/pdfft?md5=a18c005c2ef47ea26a2bcaea63fe4912&pid=1-s2.0-S2666935823000915-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935823000915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935823000915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Haber-Bosch工艺对高温高压的要求促使人们寻找一种在温和条件下可持续的氨合成方法。光催化技术是将N2转化为氨的一种潜在解决方案。然而,传统半导体的光吸收差和载流子分离效率低是该技术应用的瓶颈。本文报道了一种通过煅烧处理快速合成表面氧空位丰富的锐钛矿型TiO2纳米片(TiO2- ov)。制备的锐钛矿型TiO2样品的光催化实验表明,在不添加任何牺牲剂的情况下,TiO2- ov纳米片在纯水中太阳能驱动的N2固定中氨的产率显著提高。采用EPR、XPS、XRD、UV-Vis DRS、TEM、Raman、PL等技术系统探讨了可能的增强机理。研究表明,表面氧空位的引入显著提高了材料在可见光区的光吸收能力,降低了惰性N2的吸附和激活势垒,提高了光生电子-空穴对的分离和转移效率。从而实现了TiO2-OV中氨析出的高速率。这项工作为氨的高效人工光合作用提供了一条有前途的可持续途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance

Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions. Photocatalytic technology is a potential solution to convert N2 to ammonia. However, the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology. Herein, a facile synthesis of anatase TiO2 nanosheets with an abundance of surface oxygen vacancies (TiO2-OV) via the calcination treatment was reported. Photocatalytic experiments of the prepared anatase TiO2 samples showed that TiO2-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N2 fixation in pure water, without adding any sacrificial agents. EPR, XPS, XRD, UV-Vis DRS, TEM, Raman, and PL techniques were employed to systematically explore the possible enhanced mechanism. Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region, decreased the adsorption and activation barriers of inert N2, and improved the separation and transfer efficiency of the photogenerated electron-hole pairs. Thus, a high rate of ammonia evolution in TiO2-OV was realized. This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Outside Front Cover Contents Advancements in biomass gasification and catalytic tar-cracking technologies Ionic buffer layer design for stabilizing Zn electrodes in aqueous Zn-based batteries Novel N-doped carbon nanotubes impregnated Mn spheres with polydopamine coating as an efficient polysulfide immobilizer for Li-S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1