电化学表面合金化和蚀刻金丝,实现高性能的表面增强拉曼散射基底

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2024-06-01 DOI:10.1016/j.nanoms.2023.05.002
Yawen Zhan , Guobin Zhang , Junda Shen , Binbin Zhou , Chenghao Zhao , Junmei Guo , Ming Wen , Zhilong Tan , Lirong Zheng , Jian Lu , Yang Yang Li
{"title":"电化学表面合金化和蚀刻金丝,实现高性能的表面增强拉曼散射基底","authors":"Yawen Zhan ,&nbsp;Guobin Zhang ,&nbsp;Junda Shen ,&nbsp;Binbin Zhou ,&nbsp;Chenghao Zhao ,&nbsp;Junmei Guo ,&nbsp;Ming Wen ,&nbsp;Zhilong Tan ,&nbsp;Lirong Zheng ,&nbsp;Jian Lu ,&nbsp;Yang Yang Li","doi":"10.1016/j.nanoms.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Surface-enhanced Raman Spectroscopy (SERS) is a nondestructive technique for rapid detection of analytes even at the single-molecule level. However, highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques, greatly restricting their practical applications. A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report. Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea, in a one-pot one-step manner. X-rays absorption fine structure (XAFS) spectroscopy confirms that the AuAg alloy is induced at the surface. The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates, enabling a remarkably sensitive detection of Rhodamine B (a detection limit of 10<sup>−14</sup> ​M, and uniform strong response throughout the substrates at 10<sup>−12</sup> ​M).</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000193/pdfft?md5=70121262793c47646282984a2fee8e98&pid=1-s2.0-S2589965123000193-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering\",\"authors\":\"Yawen Zhan ,&nbsp;Guobin Zhang ,&nbsp;Junda Shen ,&nbsp;Binbin Zhou ,&nbsp;Chenghao Zhao ,&nbsp;Junmei Guo ,&nbsp;Ming Wen ,&nbsp;Zhilong Tan ,&nbsp;Lirong Zheng ,&nbsp;Jian Lu ,&nbsp;Yang Yang Li\",\"doi\":\"10.1016/j.nanoms.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface-enhanced Raman Spectroscopy (SERS) is a nondestructive technique for rapid detection of analytes even at the single-molecule level. However, highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques, greatly restricting their practical applications. A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report. Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea, in a one-pot one-step manner. X-rays absorption fine structure (XAFS) spectroscopy confirms that the AuAg alloy is induced at the surface. The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates, enabling a remarkably sensitive detection of Rhodamine B (a detection limit of 10<sup>−14</sup> ​M, and uniform strong response throughout the substrates at 10<sup>−12</sup> ​M).</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000193/pdfft?md5=70121262793c47646282984a2fee8e98&pid=1-s2.0-S2589965123000193-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000193\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000193","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

表面增强拉曼光谱(SERS)是一种无损技术,可以快速检测分析物,甚至是单分子水平的分析物。然而,高灵敏度、高可靠性的 SERS 基底大多采用复杂的纳米制造技术,极大地限制了其实际应用。本报告展示了一种将商用金丝/金箔表面转化为银合金纳米结构的便捷电化学方法。金基底在硫脲电解液中经过重复的阳极和阴极偏压处理,一步到位。X 射线吸收精细结构 (XAFS) 光谱证实,金银合金是在表面诱导产生的。独特的 AuAg 合金表面纳米结构在用作 SERS 基底时具有特别的优势,可以实现对罗丹明 B 的高灵敏度检测(检测限为 10-14 M,10-12 M 时整个基底的响应均匀强烈)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering

Surface-enhanced Raman Spectroscopy (SERS) is a nondestructive technique for rapid detection of analytes even at the single-molecule level. However, highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques, greatly restricting their practical applications. A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report. Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea, in a one-pot one-step manner. X-rays absorption fine structure (XAFS) spectroscopy confirms that the AuAg alloy is induced at the surface. The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates, enabling a remarkably sensitive detection of Rhodamine B (a detection limit of 10−14 ​M, and uniform strong response throughout the substrates at 10−12 ​M).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Defect-induced synthesis of nanoscale hierarchically porous metal-organic frameworks with tunable porosity for enhanced volatile organic compound adsorption Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis A nano-sheet graphene-based enhanced thermal radiation composite for passive heat dissipation from vehicle batteries Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1