Yawen Zhan , Guobin Zhang , Junda Shen , Binbin Zhou , Chenghao Zhao , Junmei Guo , Ming Wen , Zhilong Tan , Lirong Zheng , Jian Lu , Yang Yang Li
{"title":"电化学表面合金化和蚀刻金丝,实现高性能的表面增强拉曼散射基底","authors":"Yawen Zhan , Guobin Zhang , Junda Shen , Binbin Zhou , Chenghao Zhao , Junmei Guo , Ming Wen , Zhilong Tan , Lirong Zheng , Jian Lu , Yang Yang Li","doi":"10.1016/j.nanoms.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Surface-enhanced Raman Spectroscopy (SERS) is a nondestructive technique for rapid detection of analytes even at the single-molecule level. However, highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques, greatly restricting their practical applications. A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report. Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea, in a one-pot one-step manner. X-rays absorption fine structure (XAFS) spectroscopy confirms that the AuAg alloy is induced at the surface. The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates, enabling a remarkably sensitive detection of Rhodamine B (a detection limit of 10<sup>−14</sup> M, and uniform strong response throughout the substrates at 10<sup>−12</sup> M).</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000193/pdfft?md5=70121262793c47646282984a2fee8e98&pid=1-s2.0-S2589965123000193-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering\",\"authors\":\"Yawen Zhan , Guobin Zhang , Junda Shen , Binbin Zhou , Chenghao Zhao , Junmei Guo , Ming Wen , Zhilong Tan , Lirong Zheng , Jian Lu , Yang Yang Li\",\"doi\":\"10.1016/j.nanoms.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface-enhanced Raman Spectroscopy (SERS) is a nondestructive technique for rapid detection of analytes even at the single-molecule level. However, highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques, greatly restricting their practical applications. A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report. Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea, in a one-pot one-step manner. X-rays absorption fine structure (XAFS) spectroscopy confirms that the AuAg alloy is induced at the surface. The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates, enabling a remarkably sensitive detection of Rhodamine B (a detection limit of 10<sup>−14</sup> M, and uniform strong response throughout the substrates at 10<sup>−12</sup> M).</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000193/pdfft?md5=70121262793c47646282984a2fee8e98&pid=1-s2.0-S2589965123000193-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000193\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000193","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
表面增强拉曼光谱(SERS)是一种无损技术,可以快速检测分析物,甚至是单分子水平的分析物。然而,高灵敏度、高可靠性的 SERS 基底大多采用复杂的纳米制造技术,极大地限制了其实际应用。本报告展示了一种将商用金丝/金箔表面转化为银合金纳米结构的便捷电化学方法。金基底在硫脲电解液中经过重复的阳极和阴极偏压处理,一步到位。X 射线吸收精细结构 (XAFS) 光谱证实,金银合金是在表面诱导产生的。独特的 AuAg 合金表面纳米结构在用作 SERS 基底时具有特别的优势,可以实现对罗丹明 B 的高灵敏度检测(检测限为 10-14 M,10-12 M 时整个基底的响应均匀强烈)。
Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering
Surface-enhanced Raman Spectroscopy (SERS) is a nondestructive technique for rapid detection of analytes even at the single-molecule level. However, highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques, greatly restricting their practical applications. A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report. Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea, in a one-pot one-step manner. X-rays absorption fine structure (XAFS) spectroscopy confirms that the AuAg alloy is induced at the surface. The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates, enabling a remarkably sensitive detection of Rhodamine B (a detection limit of 10−14 M, and uniform strong response throughout the substrates at 10−12 M).
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.