{"title":"“b一带一路”地区水开发-利用-处理系统效率评价:一个三阶段DEA-BPNN模型","authors":"Shiyu Yan, Liming Yao, Zhineng Hu","doi":"10.1680/jwama.22.00034","DOIUrl":null,"url":null,"abstract":"With the rapid economic growth and urbanization, water shortage and water pollution are becoming more and more serious. It is of great significance for decision makers to get the efficiency of the water system and know its development trend. Data Envelopment Analysis (DEA) stands as a robust tool for assessing efficiency. However, the DEA model lacks predictive capabilities, which can't give guidance for future development. In contrast, the Back Propagation Neural Network (BPNN) offers powerful nonlinear mapping and adaptive prediction capabilities. To compensate for the deficiencies of the DEA model, the three stage DEA-BPNN model is developed based on environmental compatibility and economic development. This model enables specific efficiency measurements, identifies system weaknesses, and anticipates future trends. Then, the proposed model is applied to the “One Belt And One Road” region, comparing its predictive performance with that of linear regression, generalized additive model, support vector machines, k-nearest neighbors, random forest, and gradient boost decision trees. As a result, among the determination of several prediction models, the BPNN model obtains more accurate prediction results.","PeriodicalId":54569,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Water Management","volume":"243 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the efficiency of water development-utilization-treatment system in “One Belt and One Road” regions: A three stage DEA-BPNN model\",\"authors\":\"Shiyu Yan, Liming Yao, Zhineng Hu\",\"doi\":\"10.1680/jwama.22.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid economic growth and urbanization, water shortage and water pollution are becoming more and more serious. It is of great significance for decision makers to get the efficiency of the water system and know its development trend. Data Envelopment Analysis (DEA) stands as a robust tool for assessing efficiency. However, the DEA model lacks predictive capabilities, which can't give guidance for future development. In contrast, the Back Propagation Neural Network (BPNN) offers powerful nonlinear mapping and adaptive prediction capabilities. To compensate for the deficiencies of the DEA model, the three stage DEA-BPNN model is developed based on environmental compatibility and economic development. This model enables specific efficiency measurements, identifies system weaknesses, and anticipates future trends. Then, the proposed model is applied to the “One Belt And One Road” region, comparing its predictive performance with that of linear regression, generalized additive model, support vector machines, k-nearest neighbors, random forest, and gradient boost decision trees. As a result, among the determination of several prediction models, the BPNN model obtains more accurate prediction results.\",\"PeriodicalId\":54569,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Water Management\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Water Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jwama.22.00034\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Water Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jwama.22.00034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Evaluating the efficiency of water development-utilization-treatment system in “One Belt and One Road” regions: A three stage DEA-BPNN model
With the rapid economic growth and urbanization, water shortage and water pollution are becoming more and more serious. It is of great significance for decision makers to get the efficiency of the water system and know its development trend. Data Envelopment Analysis (DEA) stands as a robust tool for assessing efficiency. However, the DEA model lacks predictive capabilities, which can't give guidance for future development. In contrast, the Back Propagation Neural Network (BPNN) offers powerful nonlinear mapping and adaptive prediction capabilities. To compensate for the deficiencies of the DEA model, the three stage DEA-BPNN model is developed based on environmental compatibility and economic development. This model enables specific efficiency measurements, identifies system weaknesses, and anticipates future trends. Then, the proposed model is applied to the “One Belt And One Road” region, comparing its predictive performance with that of linear regression, generalized additive model, support vector machines, k-nearest neighbors, random forest, and gradient boost decision trees. As a result, among the determination of several prediction models, the BPNN model obtains more accurate prediction results.
期刊介绍:
Water Management publishes papers on all aspects of water treatment, water supply, river, wetland and catchment management, inland waterways and urban regeneration.
Topics covered: applied fluid dynamics and water (including supply, treatment and sewerage) and river engineering; together with the increasingly important fields of wetland and catchment management, groundwater and contaminated land, waterfront development and urban regeneration. The scope also covers hydroinformatics tools, risk and uncertainty methods, as well as environmental, social and economic issues relating to sustainable development.