基于大数据的智能金融决策支持系统

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2023-01-01 DOI:10.1515/jisys-2022-0320
Danna Tong, Guixian Tian
{"title":"基于大数据的智能金融决策支持系统","authors":"Danna Tong, Guixian Tian","doi":"10.1515/jisys-2022-0320","DOIUrl":null,"url":null,"abstract":"Abstract In the era of big data, data information has exploded, and all walks of life are impacted by big data. The arrival of big data provides the possibility for the realization of intelligent financial analysis of enterprises. At present, most enterprises’ financial analysis and decision-making based on the analysis results are mainly based on human resources, with poor automation and obvious problems in efficiency and error. In order to help the senior management of enterprises to conduct scientific and effective management, the study uses big data web crawler technology and ETL technology to process data and build an intelligent financial decision support system integrating big data together with Internet plus platform. J Group in S Province is taken as an example to study the effect before and after the application of intelligent financial decision support system. The results show that the crawler technology can monitor the basic data and the big data in the industry in real time, and improve the accuracy of decision-making. Through the intelligent financial decision support system which integrates big data, the core indexes such as profit, net asset return, and accounts receivable of the enterprises can be clearly displayed. The system can query the causes of financial changes hidden behind the financial data. Through the intelligent financial decision support system, it is found that the asset liability ratio, current assets growth rate, operating income growth rate, and financial expenses of J Group are 55.27, 10.38, 20.28%, and 1,974 million RMB, respectively. The growth rate of real sales income of J Group is 0.63%, which is 31.27% less than the excellent value of the industry 31.90%. After adopting the intelligent financial decision support system, the monthly financial statements of the enterprises increase significantly, and the monthly report analysis time decreases. The maximum number of financial statements received by the Group per month is 332, and the processing time at this time is only 2 h. According to the results, it can be seen that the intelligent financial decision support system integrating big data as the research result can effectively improve the financial management level of enterprises, improve the usefulness of financial decision-making, and make practical contributions to the field of corporate financial decision-making.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"7 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent financial decision support system based on big data\",\"authors\":\"Danna Tong, Guixian Tian\",\"doi\":\"10.1515/jisys-2022-0320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the era of big data, data information has exploded, and all walks of life are impacted by big data. The arrival of big data provides the possibility for the realization of intelligent financial analysis of enterprises. At present, most enterprises’ financial analysis and decision-making based on the analysis results are mainly based on human resources, with poor automation and obvious problems in efficiency and error. In order to help the senior management of enterprises to conduct scientific and effective management, the study uses big data web crawler technology and ETL technology to process data and build an intelligent financial decision support system integrating big data together with Internet plus platform. J Group in S Province is taken as an example to study the effect before and after the application of intelligent financial decision support system. The results show that the crawler technology can monitor the basic data and the big data in the industry in real time, and improve the accuracy of decision-making. Through the intelligent financial decision support system which integrates big data, the core indexes such as profit, net asset return, and accounts receivable of the enterprises can be clearly displayed. The system can query the causes of financial changes hidden behind the financial data. Through the intelligent financial decision support system, it is found that the asset liability ratio, current assets growth rate, operating income growth rate, and financial expenses of J Group are 55.27, 10.38, 20.28%, and 1,974 million RMB, respectively. The growth rate of real sales income of J Group is 0.63%, which is 31.27% less than the excellent value of the industry 31.90%. After adopting the intelligent financial decision support system, the monthly financial statements of the enterprises increase significantly, and the monthly report analysis time decreases. The maximum number of financial statements received by the Group per month is 332, and the processing time at this time is only 2 h. According to the results, it can be seen that the intelligent financial decision support system integrating big data as the research result can effectively improve the financial management level of enterprises, improve the usefulness of financial decision-making, and make practical contributions to the field of corporate financial decision-making.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大数据时代,数据信息爆发,各行各业都受到大数据的冲击。大数据的到来,为实现企业财务智能分析提供了可能。目前,大多数企业的财务分析和基于分析结果的决策主要依靠人力资源,自动化程度较差,效率和误差问题明显。为了帮助企业高层进行科学有效的管理,本研究采用大数据网络爬虫技术和ETL技术对数据进行处理,构建大数据与互联网+平台相结合的智能财务决策支持系统。以S省J集团为例,研究智能财务决策支持系统应用前后的效果。结果表明,爬虫技术可以实时监控行业基础数据和大数据,提高决策的准确性。通过集成大数据的智能财务决策支持系统,清晰显示企业利润、净资产收益率、应收账款等核心指标。系统可以查询隐藏在财务数据背后的财务变化的原因。通过智能财务决策支持系统,发现J集团的资产负债率为55.27亿元,流动资产增长率为10.38亿元,营业收入增长率为20.28%,财务费用为19.74亿元。J集团实际销售收入增长率为0.63%,比行业优值31.90%低31.27%。采用智能财务决策支持系统后,企业的月度财务报表数量显著增加,月度报表分析时间减少。集团每月收到的财务报表最多为332份,此时的处理时间仅为2小时。从结果可以看出,以大数据为研究成果的智能财务决策支持系统能够有效提高企业财务管理水平,提高财务决策的有用性,为企业财务决策领域做出实际贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent financial decision support system based on big data
Abstract In the era of big data, data information has exploded, and all walks of life are impacted by big data. The arrival of big data provides the possibility for the realization of intelligent financial analysis of enterprises. At present, most enterprises’ financial analysis and decision-making based on the analysis results are mainly based on human resources, with poor automation and obvious problems in efficiency and error. In order to help the senior management of enterprises to conduct scientific and effective management, the study uses big data web crawler technology and ETL technology to process data and build an intelligent financial decision support system integrating big data together with Internet plus platform. J Group in S Province is taken as an example to study the effect before and after the application of intelligent financial decision support system. The results show that the crawler technology can monitor the basic data and the big data in the industry in real time, and improve the accuracy of decision-making. Through the intelligent financial decision support system which integrates big data, the core indexes such as profit, net asset return, and accounts receivable of the enterprises can be clearly displayed. The system can query the causes of financial changes hidden behind the financial data. Through the intelligent financial decision support system, it is found that the asset liability ratio, current assets growth rate, operating income growth rate, and financial expenses of J Group are 55.27, 10.38, 20.28%, and 1,974 million RMB, respectively. The growth rate of real sales income of J Group is 0.63%, which is 31.27% less than the excellent value of the industry 31.90%. After adopting the intelligent financial decision support system, the monthly financial statements of the enterprises increase significantly, and the monthly report analysis time decreases. The maximum number of financial statements received by the Group per month is 332, and the processing time at this time is only 2 h. According to the results, it can be seen that the intelligent financial decision support system integrating big data as the research result can effectively improve the financial management level of enterprises, improve the usefulness of financial decision-making, and make practical contributions to the field of corporate financial decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
A study on predicting crime rates through machine learning and data mining using text A multiorder feature tracking and explanation strategy for explainable deep learning Intelligent control system for industrial robots based on multi-source data fusion Reinforcement learning with Gaussian process regression using variational free energy A novel distance vector hop localization method for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1