{"title":"Wassmap:用于图像流形学习的Wasserstein等距离映射","authors":"Keaton Hamm, Nick Henscheid, Shujie Kang","doi":"10.1137/22m1490053","DOIUrl":null,"url":null,"abstract":"In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds, including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds shows that Wassmap yields good embeddings compared with other global and local techniques.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"56 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning\",\"authors\":\"Keaton Hamm, Nick Henscheid, Shujie Kang\",\"doi\":\"10.1137/22m1490053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds, including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds shows that Wassmap yields good embeddings compared with other global and local techniques.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1490053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1490053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Wassmap: Wasserstein Isometric Mapping for Image Manifold Learning
In this paper, we propose Wasserstein Isometric Mapping (Wassmap), a nonlinear dimensionality reduction technique that provides solutions to some drawbacks in existing global nonlinear dimensionality reduction algorithms in imaging applications. Wassmap represents images via probability measures in Wasserstein space, then uses pairwise Wasserstein distances between the associated measures to produce a low-dimensional, approximately isometric embedding. We show that the algorithm is able to exactly recover parameters of some image manifolds, including those generated by translations or dilations of a fixed generating measure. Additionally, we show that a discrete version of the algorithm retrieves parameters from manifolds generated from discrete measures by providing a theoretical bridge to transfer recovery results from functional data to discrete data. Testing of the proposed algorithms on various image data manifolds shows that Wassmap yields good embeddings compared with other global and local techniques.