自主机器人加速器对记忆错误的表征与改进

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ACM Transactions on Cyber-Physical Systems Pub Date : 2023-10-23 DOI:10.1145/3627828
Deval Shah, Zi Yu Xue, Karthik Pattabiraman, Tor M. Aamodt
{"title":"自主机器人加速器对记忆错误的表征与改进","authors":"Deval Shah, Zi Yu Xue, Karthik Pattabiraman, Tor M. Aamodt","doi":"10.1145/3627828","DOIUrl":null,"url":null,"abstract":"Motion planning is a computationally intensive and well-studied problem in autonomous robots. However, motion planning hardware accelerators (MPA) must be soft-error resilient for deployment in safety-critical applications, and blanket application of traditional mitigation techniques is ill-suited due to cost, power, and performance overheads. We propose Collision Exposure Factor (CEF), a novel metric to assess the failure vulnerability of circuits processing spatial relationships, including motion planning. CEF is based on the insight that the safety violation probability increases with the surface area of the physical space exposed by a bit-flip. We evaluate CEF on four MPAs. We demonstrate empirically that CEF is correlated with safety violation probability, and that CEF-aware selective error mitigation provides 12.3 ×, 9.6 ×, and 4.2 × lower dangerous Failures-In-Time rate on average for the same amount of protected memory compared to uniform, bit-position, and access-frequency-aware selection of critical data. Furthermore, we show how to employ CEF to enable fault characterization using 23, 000 × fewer fault injection (FI) experiments than exhaustive FI, and evaluate our FI approach on different robots and MPAs. We demonstrate that CEF-aware FI can provide insights on vulnerable bits in an MPA while taking the same amount of time as uniform statistical FI. Finally, we use the CEF to formulate guidelines for designing soft-error resilient MPAs.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"355 3","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing and Improving Resilience of Accelerators to Memory Errors in Autonomous Robots\",\"authors\":\"Deval Shah, Zi Yu Xue, Karthik Pattabiraman, Tor M. Aamodt\",\"doi\":\"10.1145/3627828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion planning is a computationally intensive and well-studied problem in autonomous robots. However, motion planning hardware accelerators (MPA) must be soft-error resilient for deployment in safety-critical applications, and blanket application of traditional mitigation techniques is ill-suited due to cost, power, and performance overheads. We propose Collision Exposure Factor (CEF), a novel metric to assess the failure vulnerability of circuits processing spatial relationships, including motion planning. CEF is based on the insight that the safety violation probability increases with the surface area of the physical space exposed by a bit-flip. We evaluate CEF on four MPAs. We demonstrate empirically that CEF is correlated with safety violation probability, and that CEF-aware selective error mitigation provides 12.3 ×, 9.6 ×, and 4.2 × lower dangerous Failures-In-Time rate on average for the same amount of protected memory compared to uniform, bit-position, and access-frequency-aware selection of critical data. Furthermore, we show how to employ CEF to enable fault characterization using 23, 000 × fewer fault injection (FI) experiments than exhaustive FI, and evaluate our FI approach on different robots and MPAs. We demonstrate that CEF-aware FI can provide insights on vulnerable bits in an MPA while taking the same amount of time as uniform statistical FI. Finally, we use the CEF to formulate guidelines for designing soft-error resilient MPAs.\",\"PeriodicalId\":7055,\"journal\":{\"name\":\"ACM Transactions on Cyber-Physical Systems\",\"volume\":\"355 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3627828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在自主机器人中,运动规划是一个计算量大且研究深入的问题。然而,运动规划硬件加速器(MPA)必须具有软错误弹性,才能在安全关键应用中部署,而由于成本、功率和性能开销,传统缓解技术的一揽子应用并不适合。我们提出了碰撞暴露因子(CEF),这是一种评估电路处理空间关系(包括运动规划)的失效脆弱性的新度量。CEF是基于这样一种认识,即安全违规概率随着比特翻转所暴露的物理空间表面积的增加而增加。我们评估了四个海洋保护区的CEF。我们从经验上证明了CEF与安全违反概率相关,并且与统一、位位置和访问频率感知的关键数据选择相比,对于相同数量的受保护内存,CEF感知的选择性错误缓解平均降低了12.3倍、9.6倍和4.2倍的危险及时故障率。此外,我们展示了如何使用CEF来实现故障表征,使用的故障注入(FI)实验比穷举FI少23000倍,并在不同的机器人和MPAs上评估了我们的FI方法。我们证明,cef感知的FI可以提供MPA中脆弱钻头的见解,同时花费与统一统计FI相同的时间。最后,我们使用CEF来制定设计软误差弹性mpa的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing and Improving Resilience of Accelerators to Memory Errors in Autonomous Robots
Motion planning is a computationally intensive and well-studied problem in autonomous robots. However, motion planning hardware accelerators (MPA) must be soft-error resilient for deployment in safety-critical applications, and blanket application of traditional mitigation techniques is ill-suited due to cost, power, and performance overheads. We propose Collision Exposure Factor (CEF), a novel metric to assess the failure vulnerability of circuits processing spatial relationships, including motion planning. CEF is based on the insight that the safety violation probability increases with the surface area of the physical space exposed by a bit-flip. We evaluate CEF on four MPAs. We demonstrate empirically that CEF is correlated with safety violation probability, and that CEF-aware selective error mitigation provides 12.3 ×, 9.6 ×, and 4.2 × lower dangerous Failures-In-Time rate on average for the same amount of protected memory compared to uniform, bit-position, and access-frequency-aware selection of critical data. Furthermore, we show how to employ CEF to enable fault characterization using 23, 000 × fewer fault injection (FI) experiments than exhaustive FI, and evaluate our FI approach on different robots and MPAs. We demonstrate that CEF-aware FI can provide insights on vulnerable bits in an MPA while taking the same amount of time as uniform statistical FI. Finally, we use the CEF to formulate guidelines for designing soft-error resilient MPAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Cyber-Physical Systems
ACM Transactions on Cyber-Physical Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.70
自引率
4.30%
发文量
40
期刊最新文献
On Cyber-Physical Fault Resilience in Data Communication: A Case From A LoRaWAN Network Systems Design DistressNet-NG: A Resilient Data Storage and Sharing Framework for Mobile Edge Computing in Cyber-Physical Systems A Blockchain Architecture to Increase the Resilience of Industrial Control Systems from the Effects of a Ransomware Attack: A Proposal and Initial Results A Combinatorial Optimization Analysis Method for Detecting Malicious Industrial Internet Attack Behaviors Statistical Verification using Surrogate Models and Conformal Inference and a Comparison with Risk-aware Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1