高级磨料加工技术特刊

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS International Journal of Automation Technology Pub Date : 2023-01-05 DOI:10.20965/ijat.2023.p0003
Minoru Ota, Hirofumi Suzuki, Kazuhito Ohashi, Takazo Yamada
{"title":"高级磨料加工技术特刊","authors":"Minoru Ota, Hirofumi Suzuki, Kazuhito Ohashi, Takazo Yamada","doi":"10.20965/ijat.2023.p0003","DOIUrl":null,"url":null,"abstract":"Abrasive processing technologies support both the creation of new products and progressive production processes as finishing processing in various industries, such as the automotive, telecommunications, semiconductor, healthcare, energy, and aerospace industries. In this era of major changes, known as the Fourth Industrial Revolution, advanced abrasive processing technologies that produce cutting-edge devices, machinery, and equipment for a smart society are needed. The subjects related to abrasive processing are extremely diverse, including function generation processing and ICT fusion processing, in addition to the continuing basic subjects, including high-efficiency processing, difficult-to-cut material processing, ultra/high-precision processing, etc. The field of abrasive processing has recently been expanding from removal processing to additional types of processing, such as additive manufacturing. As a result, its importance is increasing as a technology indispensable for advanced industries such as healthcare and the production of power semiconductors, cutting-edge semiconductors, etc. On the other hand, new abrasive processing technologies, such as grinding wheel surface property analysis and highly efficient surface finishing methods, have developed along with the advancement of the elemental technologies that support abrasive processing using the latest measurement methods and ultra-precision technology. Furthermore, new research, such as work on energy-assisted or reaction-assisted grinding, has been conducted through the fusion of the materials science and physical chemistry fields. This special issue contains seven papers that cover the following topics. - Abrasive jet processing - Analysis of the surface profile of a grinding wheel - Drilling of glass with a diamond tool - Reaction-assisted grinding - Barrel finishing - High-speed polishing We deeply appreciate the authors for their careful work and thank the reviewers for their incisive efforts in producing this special issue. We hope that it will help readers understand the latest research on abrasive processing, encouraging and providing hints for further research on abrasive processing technologies.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special Issue on Advanced Abrasive Processing Technologies\",\"authors\":\"Minoru Ota, Hirofumi Suzuki, Kazuhito Ohashi, Takazo Yamada\",\"doi\":\"10.20965/ijat.2023.p0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abrasive processing technologies support both the creation of new products and progressive production processes as finishing processing in various industries, such as the automotive, telecommunications, semiconductor, healthcare, energy, and aerospace industries. In this era of major changes, known as the Fourth Industrial Revolution, advanced abrasive processing technologies that produce cutting-edge devices, machinery, and equipment for a smart society are needed. The subjects related to abrasive processing are extremely diverse, including function generation processing and ICT fusion processing, in addition to the continuing basic subjects, including high-efficiency processing, difficult-to-cut material processing, ultra/high-precision processing, etc. The field of abrasive processing has recently been expanding from removal processing to additional types of processing, such as additive manufacturing. As a result, its importance is increasing as a technology indispensable for advanced industries such as healthcare and the production of power semiconductors, cutting-edge semiconductors, etc. On the other hand, new abrasive processing technologies, such as grinding wheel surface property analysis and highly efficient surface finishing methods, have developed along with the advancement of the elemental technologies that support abrasive processing using the latest measurement methods and ultra-precision technology. Furthermore, new research, such as work on energy-assisted or reaction-assisted grinding, has been conducted through the fusion of the materials science and physical chemistry fields. This special issue contains seven papers that cover the following topics. - Abrasive jet processing - Analysis of the surface profile of a grinding wheel - Drilling of glass with a diamond tool - Reaction-assisted grinding - Barrel finishing - High-speed polishing We deeply appreciate the authors for their careful work and thank the reviewers for their incisive efforts in producing this special issue. We hope that it will help readers understand the latest research on abrasive processing, encouraging and providing hints for further research on abrasive processing technologies.\",\"PeriodicalId\":43716,\"journal\":{\"name\":\"International Journal of Automation Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2023.p0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2023.p0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

磨料加工技术支持在汽车、电信、半导体、医疗保健、能源和航空航天工业等各个行业中创造新产品和先进的生产工艺。在这个被称为第四次工业革命的重大变革时代,需要先进的磨料加工技术,以生产智能社会所需的尖端设备和机械设备。与磨料加工相关的学科非常多样化,除了持续的基础学科,包括高效率加工、难切削材料加工、超/高精度加工等,还包括功能生成加工和ICT融合加工。磨料加工领域最近已经从去除加工扩展到其他类型的加工,例如增材制造。因此,作为医疗保健、功率半导体、尖端半导体等尖端产业不可或缺的技术,其重要性正在上升。另一方面,新的磨料加工技术,如砂轮表面性能分析和高效表面处理方法,随着元素技术的进步而发展,这些技术支持磨料加工使用最新的测量方法和超精密技术。此外,通过材料科学和物理化学领域的融合,已经进行了新的研究,例如能量辅助或反应辅助磨削工作。本期特刊包含以下主题的七篇论文。-磨料射流加工-砂轮表面轮廓分析-金刚石工具钻玻璃-反应辅助磨削-桶形精加工-高速抛光我们对作者的细心工作深表赞赏,并感谢审稿人为制作本期特刊所做的精辟努力。我们希望它能帮助读者了解磨料加工的最新研究,鼓励和提供进一步研究磨料加工技术的提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Special Issue on Advanced Abrasive Processing Technologies
Abrasive processing technologies support both the creation of new products and progressive production processes as finishing processing in various industries, such as the automotive, telecommunications, semiconductor, healthcare, energy, and aerospace industries. In this era of major changes, known as the Fourth Industrial Revolution, advanced abrasive processing technologies that produce cutting-edge devices, machinery, and equipment for a smart society are needed. The subjects related to abrasive processing are extremely diverse, including function generation processing and ICT fusion processing, in addition to the continuing basic subjects, including high-efficiency processing, difficult-to-cut material processing, ultra/high-precision processing, etc. The field of abrasive processing has recently been expanding from removal processing to additional types of processing, such as additive manufacturing. As a result, its importance is increasing as a technology indispensable for advanced industries such as healthcare and the production of power semiconductors, cutting-edge semiconductors, etc. On the other hand, new abrasive processing technologies, such as grinding wheel surface property analysis and highly efficient surface finishing methods, have developed along with the advancement of the elemental technologies that support abrasive processing using the latest measurement methods and ultra-precision technology. Furthermore, new research, such as work on energy-assisted or reaction-assisted grinding, has been conducted through the fusion of the materials science and physical chemistry fields. This special issue contains seven papers that cover the following topics. - Abrasive jet processing - Analysis of the surface profile of a grinding wheel - Drilling of glass with a diamond tool - Reaction-assisted grinding - Barrel finishing - High-speed polishing We deeply appreciate the authors for their careful work and thank the reviewers for their incisive efforts in producing this special issue. We hope that it will help readers understand the latest research on abrasive processing, encouraging and providing hints for further research on abrasive processing technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
期刊最新文献
Influence of Pilot Hole and Work Material Hardness on Thread Milling with a Wireless Holder System Effect of Different Feed Rates on Chip Evacuation in Drilling of Lead-Free Brass with a Small-Diameter Drill Special Issue on Recent Advanced Manufacturing Science and Technology Initial Wear of Fixed Diamond Wire Tool –Effect of Slurry Assisted Slicing on Machining Mechanism— Tool Path Design of Metal Powder Extrusion in Additive Manufacturing for Suppressing Shape Error Caused During Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1