鲁棒函数对函数交互回归

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-10-23 DOI:10.1177/1471082x231198907
Ufuk Beyaztas, Han Lin Shang, Abhijit Mandal
{"title":"鲁棒函数对函数交互回归","authors":"Ufuk Beyaztas, Han Lin Shang, Abhijit Mandal","doi":"10.1177/1471082x231198907","DOIUrl":null,"url":null,"abstract":"A function-on-function regression model with quadratic and interaction effects of the covariates provides a more flexible model. Despite several attempts to estimate the model’s parameters, almost all existing estimation strategies are non-robust against outliers. Outliers in the quadratic and interaction effects may deteriorate the model structure more severely than their effects in the main effect. We propose a robust estimation strategy based on the robust functional principal component decomposition of the function-valued variables and [Formula: see text]-estimator. The performance of the proposed method relies on the truncation parameters in the robust functional principal component decomposition of the function-valued variables. A robust Bayesian information criterion is used to determine the optimum truncation constants. A forward stepwise variable selection procedure is employed to determine relevant main, quadratic, and interaction effects to address a possible model misspecification. The finite-sample performance of the proposed method is investigated via a series of Monte-Carlo experiments. The proposed method’s asymptotic consistency and influence function are also studied in the supplement, and its empirical performance is further investigated using a U.S. COVID-19 dataset.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust function-on-function interaction regression\",\"authors\":\"Ufuk Beyaztas, Han Lin Shang, Abhijit Mandal\",\"doi\":\"10.1177/1471082x231198907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A function-on-function regression model with quadratic and interaction effects of the covariates provides a more flexible model. Despite several attempts to estimate the model’s parameters, almost all existing estimation strategies are non-robust against outliers. Outliers in the quadratic and interaction effects may deteriorate the model structure more severely than their effects in the main effect. We propose a robust estimation strategy based on the robust functional principal component decomposition of the function-valued variables and [Formula: see text]-estimator. The performance of the proposed method relies on the truncation parameters in the robust functional principal component decomposition of the function-valued variables. A robust Bayesian information criterion is used to determine the optimum truncation constants. A forward stepwise variable selection procedure is employed to determine relevant main, quadratic, and interaction effects to address a possible model misspecification. The finite-sample performance of the proposed method is investigated via a series of Monte-Carlo experiments. The proposed method’s asymptotic consistency and influence function are also studied in the supplement, and its empirical performance is further investigated using a U.S. COVID-19 dataset.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082x231198907\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1471082x231198907","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有二次效应和交互效应的函数对函数回归模型提供了一个更灵活的模型。尽管多次尝试估计模型的参数,但几乎所有现有的估计策略对异常值都是非鲁棒的。二次效应和交互效应中的异常值可能比主效应中的异常值更严重地恶化模型结构。我们提出了一种基于函数值变量的鲁棒泛函主成分分解和[公式:见文本]估计量的鲁棒估计策略。该方法的性能依赖于函数值变量鲁棒泛函主成分分解中的截断参数。采用鲁棒贝叶斯信息准则确定最佳截断常数。采用前向逐步变量选择程序来确定相关的主要、二次和交互效应,以解决可能的模型错误说明。通过一系列的蒙特卡罗实验研究了该方法的有限样本性能。本文还研究了该方法的渐近一致性和影响函数,并利用美国COVID-19数据集进一步研究了该方法的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust function-on-function interaction regression
A function-on-function regression model with quadratic and interaction effects of the covariates provides a more flexible model. Despite several attempts to estimate the model’s parameters, almost all existing estimation strategies are non-robust against outliers. Outliers in the quadratic and interaction effects may deteriorate the model structure more severely than their effects in the main effect. We propose a robust estimation strategy based on the robust functional principal component decomposition of the function-valued variables and [Formula: see text]-estimator. The performance of the proposed method relies on the truncation parameters in the robust functional principal component decomposition of the function-valued variables. A robust Bayesian information criterion is used to determine the optimum truncation constants. A forward stepwise variable selection procedure is employed to determine relevant main, quadratic, and interaction effects to address a possible model misspecification. The finite-sample performance of the proposed method is investigated via a series of Monte-Carlo experiments. The proposed method’s asymptotic consistency and influence function are also studied in the supplement, and its empirical performance is further investigated using a U.S. COVID-19 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1