{"title":"鲁棒函数对函数交互回归","authors":"Ufuk Beyaztas, Han Lin Shang, Abhijit Mandal","doi":"10.1177/1471082x231198907","DOIUrl":null,"url":null,"abstract":"A function-on-function regression model with quadratic and interaction effects of the covariates provides a more flexible model. Despite several attempts to estimate the model’s parameters, almost all existing estimation strategies are non-robust against outliers. Outliers in the quadratic and interaction effects may deteriorate the model structure more severely than their effects in the main effect. We propose a robust estimation strategy based on the robust functional principal component decomposition of the function-valued variables and [Formula: see text]-estimator. The performance of the proposed method relies on the truncation parameters in the robust functional principal component decomposition of the function-valued variables. A robust Bayesian information criterion is used to determine the optimum truncation constants. A forward stepwise variable selection procedure is employed to determine relevant main, quadratic, and interaction effects to address a possible model misspecification. The finite-sample performance of the proposed method is investigated via a series of Monte-Carlo experiments. The proposed method’s asymptotic consistency and influence function are also studied in the supplement, and its empirical performance is further investigated using a U.S. COVID-19 dataset.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust function-on-function interaction regression\",\"authors\":\"Ufuk Beyaztas, Han Lin Shang, Abhijit Mandal\",\"doi\":\"10.1177/1471082x231198907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A function-on-function regression model with quadratic and interaction effects of the covariates provides a more flexible model. Despite several attempts to estimate the model’s parameters, almost all existing estimation strategies are non-robust against outliers. Outliers in the quadratic and interaction effects may deteriorate the model structure more severely than their effects in the main effect. We propose a robust estimation strategy based on the robust functional principal component decomposition of the function-valued variables and [Formula: see text]-estimator. The performance of the proposed method relies on the truncation parameters in the robust functional principal component decomposition of the function-valued variables. A robust Bayesian information criterion is used to determine the optimum truncation constants. A forward stepwise variable selection procedure is employed to determine relevant main, quadratic, and interaction effects to address a possible model misspecification. The finite-sample performance of the proposed method is investigated via a series of Monte-Carlo experiments. The proposed method’s asymptotic consistency and influence function are also studied in the supplement, and its empirical performance is further investigated using a U.S. COVID-19 dataset.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082x231198907\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1471082x231198907","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A function-on-function regression model with quadratic and interaction effects of the covariates provides a more flexible model. Despite several attempts to estimate the model’s parameters, almost all existing estimation strategies are non-robust against outliers. Outliers in the quadratic and interaction effects may deteriorate the model structure more severely than their effects in the main effect. We propose a robust estimation strategy based on the robust functional principal component decomposition of the function-valued variables and [Formula: see text]-estimator. The performance of the proposed method relies on the truncation parameters in the robust functional principal component decomposition of the function-valued variables. A robust Bayesian information criterion is used to determine the optimum truncation constants. A forward stepwise variable selection procedure is employed to determine relevant main, quadratic, and interaction effects to address a possible model misspecification. The finite-sample performance of the proposed method is investigated via a series of Monte-Carlo experiments. The proposed method’s asymptotic consistency and influence function are also studied in the supplement, and its empirical performance is further investigated using a U.S. COVID-19 dataset.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.