{"title":"具有破碎成分的多孔介质的热力学一致变分理论","authors":"François Gay-Balmaz, Vakhtang Putkaradze","doi":"10.1007/s00161-023-01262-4","DOIUrl":null,"url":null,"abstract":"<div><p>If a porous media is being damaged by excessive stress, the elastic matrix at every infinitesimal volume separates into a ‘solid’ and a ‘broken’ component. The ‘solid’ part is the one that is capable of transferring stress, whereas the ‘broken’ part is advecting passively and is not able to transfer the stress. In previous works, damage mechanics was addressed by introducing the <i>damage parameter</i> affecting the elastic properties of the material. In this work, we take a more microscopic point of view, by considering the <i>transition</i> from the ‘solid’ part, which can transfer mechanical stress, to the ‘broken’ part, which consists of microscopic solid particles and does not transfer mechanical stress. Based on this approach, we develop a thermodynamically consistent dynamical theory for porous media including the transfer between the ‘broken’ and ‘solid’ components, by using a variational principle recently proposed in thermodynamics. This setting allows us to derive an explicit formula for the breaking rate, i.e., the transition from the ‘solid’ to the ‘broken’ phase, dependent on the Gibbs’ free energy of each phase. Using that expression, we derive a reduced variational model for material breaking under one-dimensional deformations. We show that the material is destroyed in finite time, and that the number of ‘solid’ strands vanishing at the singularity follows a power law. We also discuss connections with existing experiments on material breaking and extensions to multi-phase porous media.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 1","pages":"75 - 105"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamically consistent variational theory of porous media with a breaking component\",\"authors\":\"François Gay-Balmaz, Vakhtang Putkaradze\",\"doi\":\"10.1007/s00161-023-01262-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>If a porous media is being damaged by excessive stress, the elastic matrix at every infinitesimal volume separates into a ‘solid’ and a ‘broken’ component. The ‘solid’ part is the one that is capable of transferring stress, whereas the ‘broken’ part is advecting passively and is not able to transfer the stress. In previous works, damage mechanics was addressed by introducing the <i>damage parameter</i> affecting the elastic properties of the material. In this work, we take a more microscopic point of view, by considering the <i>transition</i> from the ‘solid’ part, which can transfer mechanical stress, to the ‘broken’ part, which consists of microscopic solid particles and does not transfer mechanical stress. Based on this approach, we develop a thermodynamically consistent dynamical theory for porous media including the transfer between the ‘broken’ and ‘solid’ components, by using a variational principle recently proposed in thermodynamics. This setting allows us to derive an explicit formula for the breaking rate, i.e., the transition from the ‘solid’ to the ‘broken’ phase, dependent on the Gibbs’ free energy of each phase. Using that expression, we derive a reduced variational model for material breaking under one-dimensional deformations. We show that the material is destroyed in finite time, and that the number of ‘solid’ strands vanishing at the singularity follows a power law. We also discuss connections with existing experiments on material breaking and extensions to multi-phase porous media.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"36 1\",\"pages\":\"75 - 105\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-023-01262-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01262-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Thermodynamically consistent variational theory of porous media with a breaking component
If a porous media is being damaged by excessive stress, the elastic matrix at every infinitesimal volume separates into a ‘solid’ and a ‘broken’ component. The ‘solid’ part is the one that is capable of transferring stress, whereas the ‘broken’ part is advecting passively and is not able to transfer the stress. In previous works, damage mechanics was addressed by introducing the damage parameter affecting the elastic properties of the material. In this work, we take a more microscopic point of view, by considering the transition from the ‘solid’ part, which can transfer mechanical stress, to the ‘broken’ part, which consists of microscopic solid particles and does not transfer mechanical stress. Based on this approach, we develop a thermodynamically consistent dynamical theory for porous media including the transfer between the ‘broken’ and ‘solid’ components, by using a variational principle recently proposed in thermodynamics. This setting allows us to derive an explicit formula for the breaking rate, i.e., the transition from the ‘solid’ to the ‘broken’ phase, dependent on the Gibbs’ free energy of each phase. Using that expression, we derive a reduced variational model for material breaking under one-dimensional deformations. We show that the material is destroyed in finite time, and that the number of ‘solid’ strands vanishing at the singularity follows a power law. We also discuss connections with existing experiments on material breaking and extensions to multi-phase porous media.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.