数据驱动的安全过滤器:Hamilton-Jacobi可达性、控制障碍函数和不确定系统的预测方法

IF 3.9 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Magazine Pub Date : 2023-10-01 DOI:10.1109/mcs.2023.3291885
Kim P. Wabersich, Andrew J. Taylor, Jason J. Choi, Koushil Sreenath, Claire J. Tomlin, Aaron D. Ames, Melanie N. Zeilinger
{"title":"数据驱动的安全过滤器:Hamilton-Jacobi可达性、控制障碍函数和不确定系统的预测方法","authors":"Kim P. Wabersich, Andrew J. Taylor, Jason J. Choi, Koushil Sreenath, Claire J. Tomlin, Aaron D. Ames, Melanie N. Zeilinger","doi":"10.1109/mcs.2023.3291885","DOIUrl":null,"url":null,"abstract":"Today’s control engineering problems exhibit an unprecedented complexity, with examples including the reliable integration of renewable energy sources into power grids <xref ref-type=\"bibr\" rid=\"ref1\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">[1]</xref> , safe collaboration between humans and robotic systems <xref ref-type=\"bibr\" rid=\"ref2\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">[2]</xref> , and dependable control of medical devices <xref ref-type=\"bibr\" rid=\"ref3\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">[3]</xref> offering personalized treatment <xref ref-type=\"bibr\" rid=\"ref4\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">[4]</xref> . In addition to compliance with safety criteria, the corresponding control objective is often multifaceted. It ranges from relatively simple stabilization tasks to unknown objective functions, which are, for example, accessible only through demonstrations from interactions between robots and humans <xref ref-type=\"bibr\" rid=\"ref5\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">[5]</xref> . Classical control engineering methods are, however, often based on stability criteria with respect to set points and reference trajectories, and they can therefore be challenging to apply in such unstructured tasks with potentially conflicting safety specifications [6, Secs. 3 and 6]. While numerous efforts have started to address these challenges, missing safety certificates often still prohibit the widespread application of innovative designs outside research environments. As described in “Summary,” this article presents safety filters and advanced data-driven enhancements as a flexible framework for overcoming these limitations by ensuring that safety requirements codified as static state constraints are satisfied under all physical limitations of the system.","PeriodicalId":55028,"journal":{"name":"IEEE Control Systems Magazine","volume":"5 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Data-Driven Safety Filters: Hamilton-Jacobi Reachability, Control Barrier Functions, and Predictive Methods for Uncertain Systems\",\"authors\":\"Kim P. Wabersich, Andrew J. Taylor, Jason J. Choi, Koushil Sreenath, Claire J. Tomlin, Aaron D. Ames, Melanie N. Zeilinger\",\"doi\":\"10.1109/mcs.2023.3291885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s control engineering problems exhibit an unprecedented complexity, with examples including the reliable integration of renewable energy sources into power grids <xref ref-type=\\\"bibr\\\" rid=\\\"ref1\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">[1]</xref> , safe collaboration between humans and robotic systems <xref ref-type=\\\"bibr\\\" rid=\\\"ref2\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">[2]</xref> , and dependable control of medical devices <xref ref-type=\\\"bibr\\\" rid=\\\"ref3\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">[3]</xref> offering personalized treatment <xref ref-type=\\\"bibr\\\" rid=\\\"ref4\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">[4]</xref> . In addition to compliance with safety criteria, the corresponding control objective is often multifaceted. It ranges from relatively simple stabilization tasks to unknown objective functions, which are, for example, accessible only through demonstrations from interactions between robots and humans <xref ref-type=\\\"bibr\\\" rid=\\\"ref5\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">[5]</xref> . Classical control engineering methods are, however, often based on stability criteria with respect to set points and reference trajectories, and they can therefore be challenging to apply in such unstructured tasks with potentially conflicting safety specifications [6, Secs. 3 and 6]. While numerous efforts have started to address these challenges, missing safety certificates often still prohibit the widespread application of innovative designs outside research environments. As described in “Summary,” this article presents safety filters and advanced data-driven enhancements as a flexible framework for overcoming these limitations by ensuring that safety requirements codified as static state constraints are satisfied under all physical limitations of the system.\",\"PeriodicalId\":55028,\"journal\":{\"name\":\"IEEE Control Systems Magazine\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mcs.2023.3291885\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mcs.2023.3291885","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 6

摘要

当今的控制工程问题呈现出前所未有的复杂性,例如可再生能源与电网的可靠整合[1],人类与机器人系统之间的安全协作[2],以及提供个性化治疗的医疗设备的可靠控制[3][4]。除了遵守安全标准之外,相应的控制目标通常是多方面的。它的范围从相对简单的稳定任务到未知的目标函数,例如,只有通过机器人和人类之间的交互演示才能访问[5]。然而,经典的控制工程方法通常是基于关于设定点和参考轨迹的稳定性标准,因此,在这种具有潜在冲突的安全规范的非结构化任务中,它们可能具有挑战性[6,第3节和第6节]。虽然已经开始努力解决这些挑战,但缺乏安全证书往往仍然阻碍了创新设计在研究环境之外的广泛应用。如“摘要”中所述,本文将安全过滤器和高级数据驱动增强作为灵活的框架,通过确保在系统的所有物理限制下满足作为静态约束的安全需求,来克服这些限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Safety Filters: Hamilton-Jacobi Reachability, Control Barrier Functions, and Predictive Methods for Uncertain Systems
Today’s control engineering problems exhibit an unprecedented complexity, with examples including the reliable integration of renewable energy sources into power grids [1] , safe collaboration between humans and robotic systems [2] , and dependable control of medical devices [3] offering personalized treatment [4] . In addition to compliance with safety criteria, the corresponding control objective is often multifaceted. It ranges from relatively simple stabilization tasks to unknown objective functions, which are, for example, accessible only through demonstrations from interactions between robots and humans [5] . Classical control engineering methods are, however, often based on stability criteria with respect to set points and reference trajectories, and they can therefore be challenging to apply in such unstructured tasks with potentially conflicting safety specifications [6, Secs. 3 and 6]. While numerous efforts have started to address these challenges, missing safety certificates often still prohibit the widespread application of innovative designs outside research environments. As described in “Summary,” this article presents safety filters and advanced data-driven enhancements as a flexible framework for overcoming these limitations by ensuring that safety requirements codified as static state constraints are satisfied under all physical limitations of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Magazine
IEEE Control Systems Magazine 工程技术-自动化与控制系统
CiteScore
3.70
自引率
5.30%
发文量
137
审稿时长
>12 weeks
期刊介绍: As the official means of communication for the IEEE Control Systems Society, the IEEE Control Systems Magazine publishes interesting, useful, and informative material on all aspects of control system technology for the benefit of control educators, practitioners, and researchers.
期刊最新文献
IEEE Moving filler IEEE Feedback Christoforos N. Hadjicostis [People in Control] Chao Chen [PhDs in Control] Conference on Control Technology and Applications 2024 [Conference Reports]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1