基于随机傅立叶特征和Tsallis熵局部逼近的大规模高斯过程回归

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IEICE Transactions on Information and Systems Pub Date : 2023-10-01 DOI:10.1587/transinf.2023edl8016
Hongli ZHANG, Jinglei LIU
{"title":"基于随机傅立叶特征和Tsallis熵局部逼近的大规模高斯过程回归","authors":"Hongli ZHANG, Jinglei LIU","doi":"10.1587/transinf.2023edl8016","DOIUrl":null,"url":null,"abstract":"With the emergence of a large quantity of data in science and industry, it is urgent to improve the prediction accuracy and reduce the high complexity of Gaussian process regression (GPR). However, the traditional global approximation and local approximation have corresponding shortcomings, such as global approximation tends to ignore local features, and local approximation has the problem of over-fitting. In order to solve these problems, a large-scale Gaussian process regression algorithm (RFFLT) combining random Fourier features (RFF) and local approximation is proposed. 1) In order to speed up the training time, we use the random Fourier feature map input data mapped to the random low-dimensional feature space for processing. The main innovation of the algorithm is to design features by using existing fast linear processing methods, so that the inner product of the transformed data is approximately equal to the inner product in the feature space of the shift invariant kernel specified by the user. 2) The generalized robust Bayesian committee machine (GRBCM) based on Tsallis mutual information method is used in local approximation, which enhances the flexibility of the model and generates a sparse representation of the expert weight distribution compared with previous work. The algorithm RFFLT was tested on six real data sets, which greatly shortened the time of regression prediction and improved the prediction accuracy.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Gaussian Process Regression Based on Random Fourier Features and Local Approximation with Tsallis Entropy\",\"authors\":\"Hongli ZHANG, Jinglei LIU\",\"doi\":\"10.1587/transinf.2023edl8016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the emergence of a large quantity of data in science and industry, it is urgent to improve the prediction accuracy and reduce the high complexity of Gaussian process regression (GPR). However, the traditional global approximation and local approximation have corresponding shortcomings, such as global approximation tends to ignore local features, and local approximation has the problem of over-fitting. In order to solve these problems, a large-scale Gaussian process regression algorithm (RFFLT) combining random Fourier features (RFF) and local approximation is proposed. 1) In order to speed up the training time, we use the random Fourier feature map input data mapped to the random low-dimensional feature space for processing. The main innovation of the algorithm is to design features by using existing fast linear processing methods, so that the inner product of the transformed data is approximately equal to the inner product in the feature space of the shift invariant kernel specified by the user. 2) The generalized robust Bayesian committee machine (GRBCM) based on Tsallis mutual information method is used in local approximation, which enhances the flexibility of the model and generates a sparse representation of the expert weight distribution compared with previous work. The algorithm RFFLT was tested on six real data sets, which greatly shortened the time of regression prediction and improved the prediction accuracy.\",\"PeriodicalId\":55002,\"journal\":{\"name\":\"IEICE Transactions on Information and Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Transactions on Information and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transinf.2023edl8016\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2023edl8016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着科学和工业中大量数据的出现,提高高斯过程回归(Gaussian process regression, GPR)的预测精度和降低其高复杂性已成为迫切需要解决的问题。然而,传统的全局近似和局部近似都存在相应的缺点,如全局近似容易忽略局部特征,局部近似存在过拟合问题。为了解决这些问题,提出了一种结合随机傅立叶特征(RFF)和局部近似的大规模高斯过程回归算法。1)为了加快训练时间,我们使用随机傅立叶特征映射将输入数据映射到随机低维特征空间进行处理。该算法的主要创新之处在于利用现有的快速线性处理方法设计特征,使变换后的数据的内积近似等于用户指定的移位不变核特征空间内的内积。2)采用基于Tsallis互信息方法的广义鲁棒贝叶斯委员会机(GRBCM)进行局部逼近,增强了模型的灵活性,与前人相比,生成了专家权重分布的稀疏表示。RFFLT算法在6个真实数据集上进行了测试,大大缩短了回归预测时间,提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-Scale Gaussian Process Regression Based on Random Fourier Features and Local Approximation with Tsallis Entropy
With the emergence of a large quantity of data in science and industry, it is urgent to improve the prediction accuracy and reduce the high complexity of Gaussian process regression (GPR). However, the traditional global approximation and local approximation have corresponding shortcomings, such as global approximation tends to ignore local features, and local approximation has the problem of over-fitting. In order to solve these problems, a large-scale Gaussian process regression algorithm (RFFLT) combining random Fourier features (RFF) and local approximation is proposed. 1) In order to speed up the training time, we use the random Fourier feature map input data mapped to the random low-dimensional feature space for processing. The main innovation of the algorithm is to design features by using existing fast linear processing methods, so that the inner product of the transformed data is approximately equal to the inner product in the feature space of the shift invariant kernel specified by the user. 2) The generalized robust Bayesian committee machine (GRBCM) based on Tsallis mutual information method is used in local approximation, which enhances the flexibility of the model and generates a sparse representation of the expert weight distribution compared with previous work. The algorithm RFFLT was tested on six real data sets, which greatly shortened the time of regression prediction and improved the prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Transactions on Information and Systems
IEICE Transactions on Information and Systems 工程技术-计算机:软件工程
CiteScore
1.80
自引率
0.00%
发文量
238
审稿时长
5.0 months
期刊介绍: Published by The Institute of Electronics, Information and Communication Engineers Subject Area: Mathematics Physics Biology, Life Sciences and Basic Medicine General Medicine, Social Medicine, and Nursing Sciences Clinical Medicine Engineering in General Nanosciences and Materials Sciences Mechanical Engineering Electrical and Electronic Engineering Information Sciences Economics, Business & Management Psychology, Education.
期刊最新文献
Frameworks for Privacy-Preserving Federated Learning Lightweight and Fast Low-Light Image Enhancement Method Based on PoolFormer An Evaluation of the Impact of Distance on Perceptual Quality of Textured 3D Meshes Efficient Action Spotting Using Saliency Feature Weighting Testing and Delay-Monitoring for the High Reliability of Memory-Based Programmable Logic Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1