Hua Hu, Zhijun Liu, Zhangfa Huang, Baohua Cao, Ming Chen, Qin Wang, Wanbing Guan, Jun Yang, Jianxin Wang, Yu Su
{"title":"高性能La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3 - δ</sub>醋酸-丙烯酸法制备纳米粉体","authors":"Hua Hu, Zhijun Liu, Zhangfa Huang, Baohua Cao, Ming Chen, Qin Wang, Wanbing Guan, Jun Yang, Jianxin Wang, Yu Su","doi":"10.2109/jcersj2.23071","DOIUrl":null,"url":null,"abstract":"A novel acetic-acrylic (AA) approach was developed to obtain La0.6Sr0.4CoO3−δ (LSC) using lanthanum oxide, acetate, and acrylic acid as the starting materials. We synthesized several LSC products with varying acrylic acid (L) and metal salt (M) molar ratios (L/M). The precursors and the final products were thoroughly characterized. When the L/M molar ratio is 0.9, the high-purity nano LSC powders were obtained by heating at 900 °C. The conductivity of LSC bulk sample was equal to 2534 and 2430 S cm−1 at 650 and 700 °C, respectively. This sintered LSC was used in a cathode with polarisation resistances (Rp) of 0.190 and 0.084 Ω·cm2 at 650 and 700 °C, respectively. It was observed that at 700 and 650 °C, the power density of an anode with a structure that might be defined as Ni-3YSZ/8YSZ/GDC/LSC-0.9 was 947 and 585 mW cm−2, respectively. Our results revealed that the high-performance LSC powders could be synthesized by the acetic-acrylic synthesis method, applicable to a large scale.","PeriodicalId":17246,"journal":{"name":"Journal of the Ceramic Society of Japan","volume":"22 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of high-performance La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3−δ</sub> nano-powder prepared via an acetic–acrylic method\",\"authors\":\"Hua Hu, Zhijun Liu, Zhangfa Huang, Baohua Cao, Ming Chen, Qin Wang, Wanbing Guan, Jun Yang, Jianxin Wang, Yu Su\",\"doi\":\"10.2109/jcersj2.23071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel acetic-acrylic (AA) approach was developed to obtain La0.6Sr0.4CoO3−δ (LSC) using lanthanum oxide, acetate, and acrylic acid as the starting materials. We synthesized several LSC products with varying acrylic acid (L) and metal salt (M) molar ratios (L/M). The precursors and the final products were thoroughly characterized. When the L/M molar ratio is 0.9, the high-purity nano LSC powders were obtained by heating at 900 °C. The conductivity of LSC bulk sample was equal to 2534 and 2430 S cm−1 at 650 and 700 °C, respectively. This sintered LSC was used in a cathode with polarisation resistances (Rp) of 0.190 and 0.084 Ω·cm2 at 650 and 700 °C, respectively. It was observed that at 700 and 650 °C, the power density of an anode with a structure that might be defined as Ni-3YSZ/8YSZ/GDC/LSC-0.9 was 947 and 585 mW cm−2, respectively. Our results revealed that the high-performance LSC powders could be synthesized by the acetic-acrylic synthesis method, applicable to a large scale.\",\"PeriodicalId\":17246,\"journal\":{\"name\":\"Journal of the Ceramic Society of Japan\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Ceramic Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2109/jcersj2.23071\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ceramic Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2109/jcersj2.23071","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
以氧化镧、乙酸酯和丙烯酸为原料,采用醋酸-丙烯酸(AA)法制备La0.6Sr0.4CoO3−δ (LSC)。我们合成了几种不同丙烯酸(L)和金属盐(M)摩尔比(L/M)的LSC产品。对前体和最终产物进行了全面表征。当L/M摩尔比为0.9时,在900℃下加热可制得高纯度的纳米LSC粉末。在650°C和700°C时,LSC体样品的电导率分别为2534和2430 S cm−1。该烧结LSC在650℃和700℃下分别用于极化电阻(Rp)为0.190和0.084 Ω·cm2的阴极。结果表明,在700℃和650℃时,Ni-3YSZ/8YSZ/GDC/LSC-0.9结构阳极的功率密度分别为947和585 mW cm−2。结果表明,采用醋酸-丙烯酸合成方法可以合成高性能的LSC粉末,适用于大规模生产。
Synthesis of high-performance La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3−δ</sub> nano-powder prepared via an acetic–acrylic method
A novel acetic-acrylic (AA) approach was developed to obtain La0.6Sr0.4CoO3−δ (LSC) using lanthanum oxide, acetate, and acrylic acid as the starting materials. We synthesized several LSC products with varying acrylic acid (L) and metal salt (M) molar ratios (L/M). The precursors and the final products were thoroughly characterized. When the L/M molar ratio is 0.9, the high-purity nano LSC powders were obtained by heating at 900 °C. The conductivity of LSC bulk sample was equal to 2534 and 2430 S cm−1 at 650 and 700 °C, respectively. This sintered LSC was used in a cathode with polarisation resistances (Rp) of 0.190 and 0.084 Ω·cm2 at 650 and 700 °C, respectively. It was observed that at 700 and 650 °C, the power density of an anode with a structure that might be defined as Ni-3YSZ/8YSZ/GDC/LSC-0.9 was 947 and 585 mW cm−2, respectively. Our results revealed that the high-performance LSC powders could be synthesized by the acetic-acrylic synthesis method, applicable to a large scale.
期刊介绍:
The Journal of the Ceramic Society of Japan (JCS-Japan) publishes original experimental and theoretical researches and reviews on ceramic science, ceramic materials, and related fields, including composites and hybrids. JCS-Japan welcomes manuscripts on both fundamental and applied researches.