James Guest, Ian Commerford, Nilesh Modi, Sheler Saadati, Juan Carlos Alonso, Thisandu Kahingala
{"title":"加速基于逆变器资源的电磁瞬变模拟:澳大利亚经验","authors":"James Guest, Ian Commerford, Nilesh Modi, Sheler Saadati, Juan Carlos Alonso, Thisandu Kahingala","doi":"10.1109/mele.2023.3291270","DOIUrl":null,"url":null,"abstract":"As the penetration of complex software-driven inverter-based resources (IBRs) rapidly increases in power systems around the world, the need for modeling large areas of these systems in a time-domain electromagnetic transient (EMT) environment has also increased. Since 2016, the Australian Energy Market Operator (AEMO) has been developing “large-scale” EMT models of parts of Australia’s interconnected Eastern Australian power system, known as the <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">National Electricity Market</i> ( <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">NEM</i> ), for use across many of AEMO’s functions as the NEM’s independent system operator. Due to the size and complexity of the models, these simulations have required large computational requirements and were typically very slow, taking more than 24 h for a 30-s simulation in 2016.","PeriodicalId":45277,"journal":{"name":"IEEE Electrification Magazine","volume":"54 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speeding Up Electromagnetic Transient Simulations for Inverter-Based Resources: Australian experience\",\"authors\":\"James Guest, Ian Commerford, Nilesh Modi, Sheler Saadati, Juan Carlos Alonso, Thisandu Kahingala\",\"doi\":\"10.1109/mele.2023.3291270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the penetration of complex software-driven inverter-based resources (IBRs) rapidly increases in power systems around the world, the need for modeling large areas of these systems in a time-domain electromagnetic transient (EMT) environment has also increased. Since 2016, the Australian Energy Market Operator (AEMO) has been developing “large-scale” EMT models of parts of Australia’s interconnected Eastern Australian power system, known as the <italic xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">National Electricity Market</i> ( <italic xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">NEM</i> ), for use across many of AEMO’s functions as the NEM’s independent system operator. Due to the size and complexity of the models, these simulations have required large computational requirements and were typically very slow, taking more than 24 h for a 30-s simulation in 2016.\",\"PeriodicalId\":45277,\"journal\":{\"name\":\"IEEE Electrification Magazine\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electrification Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mele.2023.3291270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electrification Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mele.2023.3291270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Speeding Up Electromagnetic Transient Simulations for Inverter-Based Resources: Australian experience
As the penetration of complex software-driven inverter-based resources (IBRs) rapidly increases in power systems around the world, the need for modeling large areas of these systems in a time-domain electromagnetic transient (EMT) environment has also increased. Since 2016, the Australian Energy Market Operator (AEMO) has been developing “large-scale” EMT models of parts of Australia’s interconnected Eastern Australian power system, known as the National Electricity Market ( NEM ), for use across many of AEMO’s functions as the NEM’s independent system operator. Due to the size and complexity of the models, these simulations have required large computational requirements and were typically very slow, taking more than 24 h for a 30-s simulation in 2016.
期刊介绍:
IEEE Electrification Magazine is dedicated to disseminating information on all matters related to microgrids onboard electric vehicles, ships, trains, planes, and off-grid applications. Microgrids refer to an electric network in a car, a ship, a plane or an electric train, which has a limited number of sources and multiple loads. Off-grid applications include small scale electricity supply in areas away from high voltage power networks. Feature articles focus on advanced concepts, technologies, and practices associated with all aspects of electrification in the transportation and off-grid sectors from a technical perspective in synergy with nontechnical areas such as business, environmental, and social concerns.