利用naÏve贝叶斯算法对高中生进行预测的进一步研究

None Siti Nur Amalia, Maulana Wildan Rifaldi, Mega Aprilia Fajriati, Rona Nisa Sofia Amriza
{"title":"利用naÏve贝叶斯算法对高中生进行预测的进一步研究","authors":"None Siti Nur Amalia, Maulana Wildan Rifaldi, Mega Aprilia Fajriati, Rona Nisa Sofia Amriza","doi":"10.51903/jtikp.v14i2.373","DOIUrl":null,"url":null,"abstract":"Schools with a large number of students who continue their studies to college will be the main choice as secondary schools from the elementary level. Therefore, increasing the number of students continuing their studies is very important to meet the competition. To get around this, schools can predict the continuation of high school/vocational high school students' studies to college. The goal is that the percentage of prediction results can be used as a reference for improving the quality of education services in schools. In making this prediction, the Naïve Bayes method or algorithm is used. In this case, the Naïve Bayes algorithm is a classification method with a probability and statistical approach that is suitable for predicting the continuation of high school/vocational high school students' studies to college. The prediction result of continuing study to university using Naïve Bayes on test data has an accuracy of 0.740.","PeriodicalId":53110,"journal":{"name":"Jurnal Teknologi Informasi dan Komunikasi","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE USE OF NAÏVE BAYES ALGORITHM IN FORECASTING THE FURTHER STUDY OF HIGH SCHOOL STUDENT\",\"authors\":\"None Siti Nur Amalia, Maulana Wildan Rifaldi, Mega Aprilia Fajriati, Rona Nisa Sofia Amriza\",\"doi\":\"10.51903/jtikp.v14i2.373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schools with a large number of students who continue their studies to college will be the main choice as secondary schools from the elementary level. Therefore, increasing the number of students continuing their studies is very important to meet the competition. To get around this, schools can predict the continuation of high school/vocational high school students' studies to college. The goal is that the percentage of prediction results can be used as a reference for improving the quality of education services in schools. In making this prediction, the Naïve Bayes method or algorithm is used. In this case, the Naïve Bayes algorithm is a classification method with a probability and statistical approach that is suitable for predicting the continuation of high school/vocational high school students' studies to college. The prediction result of continuing study to university using Naïve Bayes on test data has an accuracy of 0.740.\",\"PeriodicalId\":53110,\"journal\":{\"name\":\"Jurnal Teknologi Informasi dan Komunikasi\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informasi dan Komunikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51903/jtikp.v14i2.373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51903/jtikp.v14i2.373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拥有大量学生继续学习大学的学校将成为从小学到中学的主要选择。因此,增加学生继续学习的数量对于应对竞争是非常重要的。为了解决这个问题,学校可以预测高中/职业高中学生在大学的学习。目标是预测结果的百分比可以作为提高学校教育服务质量的参考。在进行这种预测时,使用Naïve贝叶斯方法或算法。在这种情况下,Naïve贝叶斯算法是一种具有概率和统计方法的分类方法,适用于预测高中/职业高中学生升入大学的学习情况。利用Naïve贝叶斯对测试数据进行大学继续学习的预测结果准确率为0.740。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THE USE OF NAÏVE BAYES ALGORITHM IN FORECASTING THE FURTHER STUDY OF HIGH SCHOOL STUDENT
Schools with a large number of students who continue their studies to college will be the main choice as secondary schools from the elementary level. Therefore, increasing the number of students continuing their studies is very important to meet the competition. To get around this, schools can predict the continuation of high school/vocational high school students' studies to college. The goal is that the percentage of prediction results can be used as a reference for improving the quality of education services in schools. In making this prediction, the Naïve Bayes method or algorithm is used. In this case, the Naïve Bayes algorithm is a classification method with a probability and statistical approach that is suitable for predicting the continuation of high school/vocational high school students' studies to college. The prediction result of continuing study to university using Naïve Bayes on test data has an accuracy of 0.740.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
22
审稿时长
24 weeks
期刊最新文献
IDENTIFIKASI TANAMAN OBAT HERBAL BERBASIS CITRA SISTEM INFORMASI PENGELOLAAN KIOS BERBASIS WEBSITE PADA POLI KIOS YOGYAKARTA ANALISIS DAN IMPLEMENTASI LIP READING (GERAKAN BIBIR) MENJADI TEXT PADA PENGGUNAAN BAHASA INGGRIS IMPLEMENTASI APLIKASI POINT OF SALESBERBASIS ANDROID UNTUK KEDAI KOPI KUALE PROTOTYPE SMARTHOME BERBASIS INTERNET OF THINGS (IOT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1