{"title":"温度相关应力-应变硬化曲线的深度学习","authors":"Filip Nikolić, Marko Čanađija","doi":"10.5802/crmeca.185","DOIUrl":null,"url":null,"abstract":"In this study, structure – property relationships (SPR) have been investigated using machine learning methods (ML). The research objective was to create a ML model that can predict the stress – strain response of materials at different temperatures from a given microstructure with industrially acceptable accuracy and high computational efficiency. Automated microstructure generation techniques and numerical simulations were developed to create a dataset for the ML model. Two – phase 3D representative volume elements (RVEs) were analyzed using finite element analysis (FEA) to obtain the stress – strain responses of the RVEs. The phase arrangement of the RVEs, the temperature, and the stress – strain responses were used to train the ML model. The microstructure arrangement and the temperature – dependent mechanical properties of each phase were known parameters, while the output parameter was the stress – strain response of the two – phase RVE. The ML model has shown excellent prediction accuracy in the temperature range from 20 °C to 250 °C. In addition, the model showed very high computational efficiency compared to FEA, allowing much faster prediction of the stress – strain curves at specific temperatures.","PeriodicalId":10566,"journal":{"name":"Comptes Rendus. Chimie","volume":"44 4 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning of Temperature – Dependent Stress – Strain Hardening Curves\",\"authors\":\"Filip Nikolić, Marko Čanađija\",\"doi\":\"10.5802/crmeca.185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, structure – property relationships (SPR) have been investigated using machine learning methods (ML). The research objective was to create a ML model that can predict the stress – strain response of materials at different temperatures from a given microstructure with industrially acceptable accuracy and high computational efficiency. Automated microstructure generation techniques and numerical simulations were developed to create a dataset for the ML model. Two – phase 3D representative volume elements (RVEs) were analyzed using finite element analysis (FEA) to obtain the stress – strain responses of the RVEs. The phase arrangement of the RVEs, the temperature, and the stress – strain responses were used to train the ML model. The microstructure arrangement and the temperature – dependent mechanical properties of each phase were known parameters, while the output parameter was the stress – strain response of the two – phase RVE. The ML model has shown excellent prediction accuracy in the temperature range from 20 °C to 250 °C. In addition, the model showed very high computational efficiency compared to FEA, allowing much faster prediction of the stress – strain curves at specific temperatures.\",\"PeriodicalId\":10566,\"journal\":{\"name\":\"Comptes Rendus. Chimie\",\"volume\":\"44 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus. Chimie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmeca.185\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus. Chimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmeca.185","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep Learning of Temperature – Dependent Stress – Strain Hardening Curves
In this study, structure – property relationships (SPR) have been investigated using machine learning methods (ML). The research objective was to create a ML model that can predict the stress – strain response of materials at different temperatures from a given microstructure with industrially acceptable accuracy and high computational efficiency. Automated microstructure generation techniques and numerical simulations were developed to create a dataset for the ML model. Two – phase 3D representative volume elements (RVEs) were analyzed using finite element analysis (FEA) to obtain the stress – strain responses of the RVEs. The phase arrangement of the RVEs, the temperature, and the stress – strain responses were used to train the ML model. The microstructure arrangement and the temperature – dependent mechanical properties of each phase were known parameters, while the output parameter was the stress – strain response of the two – phase RVE. The ML model has shown excellent prediction accuracy in the temperature range from 20 °C to 250 °C. In addition, the model showed very high computational efficiency compared to FEA, allowing much faster prediction of the stress – strain curves at specific temperatures.
期刊介绍:
The Comptes Rendus - Chimie are a free-of-charge, open access and peer-reviewed electronic scientific journal publishing original research articles. It is one of seven journals published by the Académie des sciences.
Its objective is to enable researchers to quickly share their work with the international scientific community.
The Comptes Rendus - Chimie also publish journal articles, thematic issues and articles reflecting the history of the Académie des sciences and its current scientific activity.