Qinghua Zhang, Yi Chen, Si Chen, Bin Su, Yibing Li, Kaihui Shi, Me M. Aung, Kyaing Sein
{"title":"缅甸中部蛇绿岩带Indawgyi基性岩的内-新特提斯俯冲起始","authors":"Qinghua Zhang, Yi Chen, Si Chen, Bin Su, Yibing Li, Kaihui Shi, Me M. Aung, Kyaing Sein","doi":"10.1130/b37076.1","DOIUrl":null,"url":null,"abstract":"Geological evidence has demonstrated the presence of an intra−Neo-Tethyan subduction system during the Cretaceous. However, when and how this intra-oceanic subduction was initiated, especially for the eastern Neo-Tethys, are still not well constrained. Here we present geochemical and geochronological analyses of the Indawgyi mafic rocks from the Central Ophiolite Belt in the West Burma Block (Myanmar), which record early forearc spreading during the intra−Neo-Tethyan subduction initiation. Zircon U-Pb ages of gabbros indicate the ophiolitic crust formation at ca. 120 Ma. Gabbros show mid-oceanic-ridge basalt−like rare earth element patterns and depleted Sr-Nd-Pb isotopic compositions with negative anomalies of high field strength elements (e.g., Nb, Ta, Zr, and Hf), similar to forearc basalt characteristics. Basalts show more slab-derived component signatures than the gabbros and represent mantle wedge magmas most likely formed between forearc spreading and arc maturation. These data, together with regional geological records and geophysical observations, suggest that the Indawgyi gabbros were derived from an intra−Neo-Tethyan forearc setting during the early stage of subduction initiation. Considering the timing of supra-subduction zone ophiolites and metamorphic sole in the Indo-Burma Range, we propose that spontaneous subduction initiation and sinking of the eastern Neo-Tethyan lithosphere during the Early Cretaceous (ca. 120 Ma) led to formation of the Indawgyi forearc crust, whereas subsequent mature subduction resulted in the Middle Cretaceous (ca. 108‒90 Ma) arc magmatism in the West Burma Block. These findings confirm the double-subduction model of the Neo-Tethys Ocean and shed new light on the intra−Neo-Tethyan subduction initiation.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":"30 2","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intra−Neo-Tethyan subduction initiation inferred from the Indawgyi mafic rocks in the Central Ophiolite Belt, Myanmar\",\"authors\":\"Qinghua Zhang, Yi Chen, Si Chen, Bin Su, Yibing Li, Kaihui Shi, Me M. Aung, Kyaing Sein\",\"doi\":\"10.1130/b37076.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geological evidence has demonstrated the presence of an intra−Neo-Tethyan subduction system during the Cretaceous. However, when and how this intra-oceanic subduction was initiated, especially for the eastern Neo-Tethys, are still not well constrained. Here we present geochemical and geochronological analyses of the Indawgyi mafic rocks from the Central Ophiolite Belt in the West Burma Block (Myanmar), which record early forearc spreading during the intra−Neo-Tethyan subduction initiation. Zircon U-Pb ages of gabbros indicate the ophiolitic crust formation at ca. 120 Ma. Gabbros show mid-oceanic-ridge basalt−like rare earth element patterns and depleted Sr-Nd-Pb isotopic compositions with negative anomalies of high field strength elements (e.g., Nb, Ta, Zr, and Hf), similar to forearc basalt characteristics. Basalts show more slab-derived component signatures than the gabbros and represent mantle wedge magmas most likely formed between forearc spreading and arc maturation. These data, together with regional geological records and geophysical observations, suggest that the Indawgyi gabbros were derived from an intra−Neo-Tethyan forearc setting during the early stage of subduction initiation. Considering the timing of supra-subduction zone ophiolites and metamorphic sole in the Indo-Burma Range, we propose that spontaneous subduction initiation and sinking of the eastern Neo-Tethyan lithosphere during the Early Cretaceous (ca. 120 Ma) led to formation of the Indawgyi forearc crust, whereas subsequent mature subduction resulted in the Middle Cretaceous (ca. 108‒90 Ma) arc magmatism in the West Burma Block. These findings confirm the double-subduction model of the Neo-Tethys Ocean and shed new light on the intra−Neo-Tethyan subduction initiation.\",\"PeriodicalId\":55104,\"journal\":{\"name\":\"Geological Society of America Bulletin\",\"volume\":\"30 2\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Society of America Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/b37076.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b37076.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Intra−Neo-Tethyan subduction initiation inferred from the Indawgyi mafic rocks in the Central Ophiolite Belt, Myanmar
Geological evidence has demonstrated the presence of an intra−Neo-Tethyan subduction system during the Cretaceous. However, when and how this intra-oceanic subduction was initiated, especially for the eastern Neo-Tethys, are still not well constrained. Here we present geochemical and geochronological analyses of the Indawgyi mafic rocks from the Central Ophiolite Belt in the West Burma Block (Myanmar), which record early forearc spreading during the intra−Neo-Tethyan subduction initiation. Zircon U-Pb ages of gabbros indicate the ophiolitic crust formation at ca. 120 Ma. Gabbros show mid-oceanic-ridge basalt−like rare earth element patterns and depleted Sr-Nd-Pb isotopic compositions with negative anomalies of high field strength elements (e.g., Nb, Ta, Zr, and Hf), similar to forearc basalt characteristics. Basalts show more slab-derived component signatures than the gabbros and represent mantle wedge magmas most likely formed between forearc spreading and arc maturation. These data, together with regional geological records and geophysical observations, suggest that the Indawgyi gabbros were derived from an intra−Neo-Tethyan forearc setting during the early stage of subduction initiation. Considering the timing of supra-subduction zone ophiolites and metamorphic sole in the Indo-Burma Range, we propose that spontaneous subduction initiation and sinking of the eastern Neo-Tethyan lithosphere during the Early Cretaceous (ca. 120 Ma) led to formation of the Indawgyi forearc crust, whereas subsequent mature subduction resulted in the Middle Cretaceous (ca. 108‒90 Ma) arc magmatism in the West Burma Block. These findings confirm the double-subduction model of the Neo-Tethys Ocean and shed new light on the intra−Neo-Tethyan subduction initiation.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.