{"title":"AI医疗系统中有意义的解释对用户信任的影响:为非专家用户设计解释","authors":"Retno Larasati, Anna De Liddo, Enrico Motta","doi":"10.1145/3631614","DOIUrl":null,"url":null,"abstract":"Whereas most research in AI system explanation for healthcare applications looks at developing algorithmic explanations targeted at AI experts or medical professionals, the question we raise is: How do we build meaningful explanations for laypeople? And how does a meaningful explanation affect user’s trust perceptions? Our research investigates how the key factors affecting human-AI trust change in the light of human expertise, and how to design explanations specifically targeted at non-experts. By means of a stage-based design method, we map the ways laypeople understand AI explanations in a User Explanation Model. We also map both medical professionals and AI experts’ practice in an Expert Explanation Model. A Target Explanation Model is then proposed, which represents how experts’ practice and layperson’s understanding can be combined to design meaningful explanations. Design guidelines for meaningful AI explanations are proposed, and a prototype of AI system explanation for non-expert users in a breast cancer scenario is presented and assessed on how it affect users’ trust perceptions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meaningful Explanation Effect on User’s Trust in an AI Medical System: Designing Explanations for Non-Expert Users\",\"authors\":\"Retno Larasati, Anna De Liddo, Enrico Motta\",\"doi\":\"10.1145/3631614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whereas most research in AI system explanation for healthcare applications looks at developing algorithmic explanations targeted at AI experts or medical professionals, the question we raise is: How do we build meaningful explanations for laypeople? And how does a meaningful explanation affect user’s trust perceptions? Our research investigates how the key factors affecting human-AI trust change in the light of human expertise, and how to design explanations specifically targeted at non-experts. By means of a stage-based design method, we map the ways laypeople understand AI explanations in a User Explanation Model. We also map both medical professionals and AI experts’ practice in an Expert Explanation Model. A Target Explanation Model is then proposed, which represents how experts’ practice and layperson’s understanding can be combined to design meaningful explanations. Design guidelines for meaningful AI explanations are proposed, and a prototype of AI system explanation for non-expert users in a breast cancer scenario is presented and assessed on how it affect users’ trust perceptions.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631614\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631614","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Meaningful Explanation Effect on User’s Trust in an AI Medical System: Designing Explanations for Non-Expert Users
Whereas most research in AI system explanation for healthcare applications looks at developing algorithmic explanations targeted at AI experts or medical professionals, the question we raise is: How do we build meaningful explanations for laypeople? And how does a meaningful explanation affect user’s trust perceptions? Our research investigates how the key factors affecting human-AI trust change in the light of human expertise, and how to design explanations specifically targeted at non-experts. By means of a stage-based design method, we map the ways laypeople understand AI explanations in a User Explanation Model. We also map both medical professionals and AI experts’ practice in an Expert Explanation Model. A Target Explanation Model is then proposed, which represents how experts’ practice and layperson’s understanding can be combined to design meaningful explanations. Design guidelines for meaningful AI explanations are proposed, and a prototype of AI system explanation for non-expert users in a breast cancer scenario is presented and assessed on how it affect users’ trust perceptions.