{"title":"2014年至2017年中南偏远地区多环芳烃湿沉降情况","authors":"Yanxia Li, Xiaoyong Duan","doi":"10.1002/asl.1201","DOIUrl":null,"url":null,"abstract":"<p>In recent years, there has been a notable increase in the consumption of fossil energy, leading to a significant rise in environmental pollution, particularly in China due to its rapid development. This has resulted in the frequent occurrence of large-scale fog and haze weather, highlighting the urgent need for environmental protection measures. To gain insights into the atmospheric conditions in China, an analysis was conducted on the wet deposition of polycyclic aromatic hydrocarbons (PAHs) in a remote region of Central South China from 2014 to 2017. The study revealed that the average concentrations and peak values of Ʃ<sub>16</sub>PAHs in 2014 and 2015 were considerably higher than those observed in 2016 and 2017. Furthermore, it was found that five-ring PAH species were the predominant components during 2014 and 2015, indicating a shift in the main sources of PAHs. The peaks of Ʃ<sub>16</sub>PAHs were predominantly detected in samples collected during light rain in the winter, specifically on days without heavy rainfall. This can be attributed to the absence of heavy rain, which would otherwise reduce the concentration of air pollutants. Consequently, contaminants accumulated in the air are easily enriched in rainwater. The concentrations of Ʃ<sub>15</sub>Alkyl-PAHs also exhibited a significant correlation with the number of rainfall days. Notably, a much higher annual average concentration of Ʃ<sub>15</sub>Alkyl-PAHs was observed in 2017, which experienced fewer rainfall days. Coal combustion, petroleum sources, and vehicular emissions accounted for 58%, 12%, and 30% of the PAHs in the air, respectively. Despite improvements in air quality in China since 2016, it is crucial to address the elevated concentrations of PAHs in the atmosphere, particularly under adverse meteorological conditions characterized by reduced rainfall.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1201","citationCount":"0","resultStr":"{\"title\":\"Wet deposition of polycyclic aromatic hydrocarbons in a remote area of Central South China from 2014 to 2017\",\"authors\":\"Yanxia Li, Xiaoyong Duan\",\"doi\":\"10.1002/asl.1201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, there has been a notable increase in the consumption of fossil energy, leading to a significant rise in environmental pollution, particularly in China due to its rapid development. This has resulted in the frequent occurrence of large-scale fog and haze weather, highlighting the urgent need for environmental protection measures. To gain insights into the atmospheric conditions in China, an analysis was conducted on the wet deposition of polycyclic aromatic hydrocarbons (PAHs) in a remote region of Central South China from 2014 to 2017. The study revealed that the average concentrations and peak values of Ʃ<sub>16</sub>PAHs in 2014 and 2015 were considerably higher than those observed in 2016 and 2017. Furthermore, it was found that five-ring PAH species were the predominant components during 2014 and 2015, indicating a shift in the main sources of PAHs. The peaks of Ʃ<sub>16</sub>PAHs were predominantly detected in samples collected during light rain in the winter, specifically on days without heavy rainfall. This can be attributed to the absence of heavy rain, which would otherwise reduce the concentration of air pollutants. Consequently, contaminants accumulated in the air are easily enriched in rainwater. The concentrations of Ʃ<sub>15</sub>Alkyl-PAHs also exhibited a significant correlation with the number of rainfall days. Notably, a much higher annual average concentration of Ʃ<sub>15</sub>Alkyl-PAHs was observed in 2017, which experienced fewer rainfall days. Coal combustion, petroleum sources, and vehicular emissions accounted for 58%, 12%, and 30% of the PAHs in the air, respectively. Despite improvements in air quality in China since 2016, it is crucial to address the elevated concentrations of PAHs in the atmosphere, particularly under adverse meteorological conditions characterized by reduced rainfall.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1201\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1201","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Wet deposition of polycyclic aromatic hydrocarbons in a remote area of Central South China from 2014 to 2017
In recent years, there has been a notable increase in the consumption of fossil energy, leading to a significant rise in environmental pollution, particularly in China due to its rapid development. This has resulted in the frequent occurrence of large-scale fog and haze weather, highlighting the urgent need for environmental protection measures. To gain insights into the atmospheric conditions in China, an analysis was conducted on the wet deposition of polycyclic aromatic hydrocarbons (PAHs) in a remote region of Central South China from 2014 to 2017. The study revealed that the average concentrations and peak values of Ʃ16PAHs in 2014 and 2015 were considerably higher than those observed in 2016 and 2017. Furthermore, it was found that five-ring PAH species were the predominant components during 2014 and 2015, indicating a shift in the main sources of PAHs. The peaks of Ʃ16PAHs were predominantly detected in samples collected during light rain in the winter, specifically on days without heavy rainfall. This can be attributed to the absence of heavy rain, which would otherwise reduce the concentration of air pollutants. Consequently, contaminants accumulated in the air are easily enriched in rainwater. The concentrations of Ʃ15Alkyl-PAHs also exhibited a significant correlation with the number of rainfall days. Notably, a much higher annual average concentration of Ʃ15Alkyl-PAHs was observed in 2017, which experienced fewer rainfall days. Coal combustion, petroleum sources, and vehicular emissions accounted for 58%, 12%, and 30% of the PAHs in the air, respectively. Despite improvements in air quality in China since 2016, it is crucial to address the elevated concentrations of PAHs in the atmosphere, particularly under adverse meteorological conditions characterized by reduced rainfall.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.