{"title":"幂-复合Shanks多项式的单性性","authors":"Lenny Jones","doi":"10.7169/facm/2104","DOIUrl":null,"url":null,"abstract":"Let $f(x)\\in \\mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\\mathbb{Q}$. We say $f(x)$ is \\emph{monogenic} if $\\Theta=\\{1,\\theta,\\theta^2,\\ldots ,\\theta^{N-1}\\}$ is a basis for the ring of integers $\\mathbb{Z}_K$ of $K=\\mathbb{Q}(\\theta)$, where $f(\\theta)=0$. If $\\Theta$ is not a basis for $\\mathbb{Z}_K$, we say that $f(x)$ is \\emph{non-monogenic}.Let $k\\ge 1$ be an integer, and let $(U_n)$be the sequence defined by \\[U_0=U_1=0,\\qquad U_2=1 \\qquad \\text{and}\\qquad U_n=kU_{n-1}+(k+3)U_{n-2}+U_{n-3} \\qquad \\text{for $n\\ge 3$}.\\] It is well known that $(U_n)$ is periodic modulo any integer $m\\ge 2$, and we let $\\pi(m)$ denote the length of this period. We define a \\emph{$k$-Shanks prime} to be a prime $p$ such that $\\pi(p^2)=\\pi(p)$. Let $\\mathcal{S}_k(x)=x^{3}-kx^{2}-(k+3)x-1$ and $\\mathcal{D}=(k^2+3k+9)/\\gcd(3,k)^2$. Suppose that $k\\not \\equiv 3 \\pmod{9}$ and that $\\mathcal{D}$ is squarefree. In this article, we prove that $p$ is a $k$-Shanks prime if and only if $\\mathcal{S}_k(x^p)$ is non-monogenic, for any prime $p$ such that $\\mathcal{S}_k(x)$ is irreducible in $\\mathbb{F}_p[x]$. Furthermore, we show that $\\mathcal{S}_k(x^p)$ is monogenic for any prime divisor $p$ of $\\mathcal{D}$. These results extend previous work of the author on $k$-Wall-Sun-Sun primes.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the monogenicity of power-compositional Shanks polynomials\",\"authors\":\"Lenny Jones\",\"doi\":\"10.7169/facm/2104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f(x)\\\\in \\\\mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\\\\mathbb{Q}$. We say $f(x)$ is \\\\emph{monogenic} if $\\\\Theta=\\\\{1,\\\\theta,\\\\theta^2,\\\\ldots ,\\\\theta^{N-1}\\\\}$ is a basis for the ring of integers $\\\\mathbb{Z}_K$ of $K=\\\\mathbb{Q}(\\\\theta)$, where $f(\\\\theta)=0$. If $\\\\Theta$ is not a basis for $\\\\mathbb{Z}_K$, we say that $f(x)$ is \\\\emph{non-monogenic}.Let $k\\\\ge 1$ be an integer, and let $(U_n)$be the sequence defined by \\\\[U_0=U_1=0,\\\\qquad U_2=1 \\\\qquad \\\\text{and}\\\\qquad U_n=kU_{n-1}+(k+3)U_{n-2}+U_{n-3} \\\\qquad \\\\text{for $n\\\\ge 3$}.\\\\] It is well known that $(U_n)$ is periodic modulo any integer $m\\\\ge 2$, and we let $\\\\pi(m)$ denote the length of this period. We define a \\\\emph{$k$-Shanks prime} to be a prime $p$ such that $\\\\pi(p^2)=\\\\pi(p)$. Let $\\\\mathcal{S}_k(x)=x^{3}-kx^{2}-(k+3)x-1$ and $\\\\mathcal{D}=(k^2+3k+9)/\\\\gcd(3,k)^2$. Suppose that $k\\\\not \\\\equiv 3 \\\\pmod{9}$ and that $\\\\mathcal{D}$ is squarefree. In this article, we prove that $p$ is a $k$-Shanks prime if and only if $\\\\mathcal{S}_k(x^p)$ is non-monogenic, for any prime $p$ such that $\\\\mathcal{S}_k(x)$ is irreducible in $\\\\mathbb{F}_p[x]$. Furthermore, we show that $\\\\mathcal{S}_k(x^p)$ is monogenic for any prime divisor $p$ of $\\\\mathcal{D}$. These results extend previous work of the author on $k$-Wall-Sun-Sun primes.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the monogenicity of power-compositional Shanks polynomials
Let $f(x)\in \mathbb{Z}[x]$ be a monic polynomial of degree $N$ that is irreducible over $\mathbb{Q}$. We say $f(x)$ is \emph{monogenic} if $\Theta=\{1,\theta,\theta^2,\ldots ,\theta^{N-1}\}$ is a basis for the ring of integers $\mathbb{Z}_K$ of $K=\mathbb{Q}(\theta)$, where $f(\theta)=0$. If $\Theta$ is not a basis for $\mathbb{Z}_K$, we say that $f(x)$ is \emph{non-monogenic}.Let $k\ge 1$ be an integer, and let $(U_n)$be the sequence defined by \[U_0=U_1=0,\qquad U_2=1 \qquad \text{and}\qquad U_n=kU_{n-1}+(k+3)U_{n-2}+U_{n-3} \qquad \text{for $n\ge 3$}.\] It is well known that $(U_n)$ is periodic modulo any integer $m\ge 2$, and we let $\pi(m)$ denote the length of this period. We define a \emph{$k$-Shanks prime} to be a prime $p$ such that $\pi(p^2)=\pi(p)$. Let $\mathcal{S}_k(x)=x^{3}-kx^{2}-(k+3)x-1$ and $\mathcal{D}=(k^2+3k+9)/\gcd(3,k)^2$. Suppose that $k\not \equiv 3 \pmod{9}$ and that $\mathcal{D}$ is squarefree. In this article, we prove that $p$ is a $k$-Shanks prime if and only if $\mathcal{S}_k(x^p)$ is non-monogenic, for any prime $p$ such that $\mathcal{S}_k(x)$ is irreducible in $\mathbb{F}_p[x]$. Furthermore, we show that $\mathcal{S}_k(x^p)$ is monogenic for any prime divisor $p$ of $\mathcal{D}$. These results extend previous work of the author on $k$-Wall-Sun-Sun primes.