视神经纤维电刺激中不同振幅和频率的解耦效应

Simone Romeni, Gabriele Marino, Luca Pierantoni, Silvestro Micera
{"title":"视神经纤维电刺激中不同振幅和频率的解耦效应","authors":"Simone Romeni, Gabriele Marino, Luca Pierantoni, Silvestro Micera","doi":"10.1515/cdbme-2023-1049","DOIUrl":null,"url":null,"abstract":"Abstract Introduction. Computational models of optic nerve stimulation can allow to estimate the neural response of optic nerve fibers electrical stimulation and thus can be exploited to tune stimulation parameters to obtain a specific target perception. In principle, such tuning should be performed in an automatic way, so that the chosen stimulation parameters minimize some given cost function related to the quality of resulting the visual perception, but the use of such automatic methods is still under study and no satisfactory solution is available yet. In the absence of automatic methods, stimulation parameters are customarily set via manual tuning, which can be extremely time-consuming if performed in a non-principled way. Methods. We build biophysically-accurate hybrid models of monopolar and bipolar electrical stimulation of optic nerve fibers to study how the fibers firing rates depend upon the stimulation parameters. Results. In the case of monopolar sinusoidal stimulation of optic nerve fibers, we show that the amplitude of stimulation controls the size of the recruited cluster of fibers, and that the frequency controls their firing rate, independently. Instead, for bipolar stimulation, we show that when cross-talk is non negligible it is very difficult to obtain rules of thumb linking the firing rate of target fibers to stimulation parameters. Conclusion. We show that, if the stimulation amplitude is kept such that neighboring stimulating sites do not produce cross-talk, it is possible to reconstruct visual scenes “pixel-by-pixel” without needing any optimization process. If on the contrary current steering is required and cross-talk is non negligible, then it is very difficult to obtain rules of thumb and the development and use of automatic optimization techniques should be preferable.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupling the effects of varying amplitude and frequency in the electrical stimulation of optic nerve fibers\",\"authors\":\"Simone Romeni, Gabriele Marino, Luca Pierantoni, Silvestro Micera\",\"doi\":\"10.1515/cdbme-2023-1049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction. Computational models of optic nerve stimulation can allow to estimate the neural response of optic nerve fibers electrical stimulation and thus can be exploited to tune stimulation parameters to obtain a specific target perception. In principle, such tuning should be performed in an automatic way, so that the chosen stimulation parameters minimize some given cost function related to the quality of resulting the visual perception, but the use of such automatic methods is still under study and no satisfactory solution is available yet. In the absence of automatic methods, stimulation parameters are customarily set via manual tuning, which can be extremely time-consuming if performed in a non-principled way. Methods. We build biophysically-accurate hybrid models of monopolar and bipolar electrical stimulation of optic nerve fibers to study how the fibers firing rates depend upon the stimulation parameters. Results. In the case of monopolar sinusoidal stimulation of optic nerve fibers, we show that the amplitude of stimulation controls the size of the recruited cluster of fibers, and that the frequency controls their firing rate, independently. Instead, for bipolar stimulation, we show that when cross-talk is non negligible it is very difficult to obtain rules of thumb linking the firing rate of target fibers to stimulation parameters. Conclusion. We show that, if the stimulation amplitude is kept such that neighboring stimulating sites do not produce cross-talk, it is possible to reconstruct visual scenes “pixel-by-pixel” without needing any optimization process. If on the contrary current steering is required and cross-talk is non negligible, then it is very difficult to obtain rules of thumb and the development and use of automatic optimization techniques should be preferable.\",\"PeriodicalId\":10739,\"journal\":{\"name\":\"Current Directions in Biomedical Engineering\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cdbme-2023-1049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要介绍。视神经刺激的计算模型可以估计视神经纤维电刺激的神经反应,从而可以利用调节刺激参数来获得特定的目标感知。原则上,这种调整应该以自动的方式进行,以便所选的刺激参数最小化某些给定的与视觉感知质量相关的成本函数,但是这种自动方法的使用仍在研究中,目前还没有令人满意的解决方案。在没有自动方法的情况下,通常通过手动调整来设置增产参数,如果以非原则性的方式进行,则会非常耗时。方法。我们建立了视觉神经纤维单极和双极电刺激的生物物理精确混合模型,以研究纤维放电速率如何依赖于刺激参数。结果。在单极正弦刺激视神经纤维的情况下,我们表明,刺激的幅度控制招募的纤维簇的大小,频率控制它们的放电速率,独立。相反,对于双极刺激,我们表明,当串扰不可忽略时,很难获得将目标纤维的放电速率与刺激参数联系起来的经验法则。结论。我们的研究表明,如果保持刺激幅度,使相邻的刺激位点不产生串扰,就有可能“逐像素”重建视觉场景,而不需要任何优化过程。相反,如果需要电流转向并且串扰不可忽略,那么很难获得经验法则,而开发和使用自动优化技术应该是可取的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decoupling the effects of varying amplitude and frequency in the electrical stimulation of optic nerve fibers
Abstract Introduction. Computational models of optic nerve stimulation can allow to estimate the neural response of optic nerve fibers electrical stimulation and thus can be exploited to tune stimulation parameters to obtain a specific target perception. In principle, such tuning should be performed in an automatic way, so that the chosen stimulation parameters minimize some given cost function related to the quality of resulting the visual perception, but the use of such automatic methods is still under study and no satisfactory solution is available yet. In the absence of automatic methods, stimulation parameters are customarily set via manual tuning, which can be extremely time-consuming if performed in a non-principled way. Methods. We build biophysically-accurate hybrid models of monopolar and bipolar electrical stimulation of optic nerve fibers to study how the fibers firing rates depend upon the stimulation parameters. Results. In the case of monopolar sinusoidal stimulation of optic nerve fibers, we show that the amplitude of stimulation controls the size of the recruited cluster of fibers, and that the frequency controls their firing rate, independently. Instead, for bipolar stimulation, we show that when cross-talk is non negligible it is very difficult to obtain rules of thumb linking the firing rate of target fibers to stimulation parameters. Conclusion. We show that, if the stimulation amplitude is kept such that neighboring stimulating sites do not produce cross-talk, it is possible to reconstruct visual scenes “pixel-by-pixel” without needing any optimization process. If on the contrary current steering is required and cross-talk is non negligible, then it is very difficult to obtain rules of thumb and the development and use of automatic optimization techniques should be preferable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Directions in Biomedical Engineering
Current Directions in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
239
审稿时长
14 weeks
期刊最新文献
Stability of cell adhesion noise analysis for the detection of cancer cell lines Consideration of Kv ion channels as firstorder systems Photovoltaic Stimulation Induces Overdrive Suppression in Embryonic Chicken Cardiomyocytes Comparative Analysis of Mechanical Water Level Tank and Human Fluid Flow ECG Beat classification: Impact of linear dependent samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1