{"title":"6.5马赫数钝前缘激波干扰气动热力学分析及后尾迹评估","authors":"Gaurav Shivpratap Singh, Chirag Sharma, Siddhant Swaroop Padhy, Deepu Dinesan, Bibin John","doi":"10.1177/09544100231199859","DOIUrl":null,"url":null,"abstract":"A detailed numerical study of shock-wave interference on a cylindrical blunt leading edge in hypersonic flow is carried out to reveal the effect of shock-shock interaction on peak heating and blunt body aerodynamics. This study is unique in that it examines the effect of interactions on rear wake formation and aerodynamic forces acting on the blunt body. Six different shock wave interference patterns described by Edney are studied for a freestream Mach number of 6.5. Compressible Reynolds-averaged Navier–Stokes equations are solved using finite volume method to obtain accurate prediction of the flowfield and aerodynamic loads. Hugoniot jump conditions are imposed in the inlet boundary to realize oblique shock of desired strength to interact with the detached shock at specific location. Numerical predictions are in good agreement with reported experimental measurements. The results obtained in this study reveals that the type of shock-shock interaction pattern can significantly alter the characteristics of the rear wake. Comparisons to undisturbed flow conditions reveal that Type II to VI interactions lead to an increase in wake size, whereas Type I interaction shows a marginal reduction. These changes in wake size are attributed to modifications in the forebody boundary layer induced by the shock-shock interactions. In the case of Type I interaction, however, the transmitted wave interacting with the rear wake is found to be responsible for the marginal reduction in wake size. This study also shows that changes to the rear wake structure caused by the change in interaction type can affect aerodynamic loads. Type VI interaction recorded a maximum drag coefficient of 2.96, whereas Type IV interaction yielded a maximum lift coefficient of 0.992. These findings demonstrate the potential for dynamically adjusting the control forces of a flying body by manipulating shock interference.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerothermodynamic analysis and rear wake assessment of shock wave interference over blunt leading edge at Mach 6.5\",\"authors\":\"Gaurav Shivpratap Singh, Chirag Sharma, Siddhant Swaroop Padhy, Deepu Dinesan, Bibin John\",\"doi\":\"10.1177/09544100231199859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed numerical study of shock-wave interference on a cylindrical blunt leading edge in hypersonic flow is carried out to reveal the effect of shock-shock interaction on peak heating and blunt body aerodynamics. This study is unique in that it examines the effect of interactions on rear wake formation and aerodynamic forces acting on the blunt body. Six different shock wave interference patterns described by Edney are studied for a freestream Mach number of 6.5. Compressible Reynolds-averaged Navier–Stokes equations are solved using finite volume method to obtain accurate prediction of the flowfield and aerodynamic loads. Hugoniot jump conditions are imposed in the inlet boundary to realize oblique shock of desired strength to interact with the detached shock at specific location. Numerical predictions are in good agreement with reported experimental measurements. The results obtained in this study reveals that the type of shock-shock interaction pattern can significantly alter the characteristics of the rear wake. Comparisons to undisturbed flow conditions reveal that Type II to VI interactions lead to an increase in wake size, whereas Type I interaction shows a marginal reduction. These changes in wake size are attributed to modifications in the forebody boundary layer induced by the shock-shock interactions. In the case of Type I interaction, however, the transmitted wave interacting with the rear wake is found to be responsible for the marginal reduction in wake size. This study also shows that changes to the rear wake structure caused by the change in interaction type can affect aerodynamic loads. Type VI interaction recorded a maximum drag coefficient of 2.96, whereas Type IV interaction yielded a maximum lift coefficient of 0.992. These findings demonstrate the potential for dynamically adjusting the control forces of a flying body by manipulating shock interference.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100231199859\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544100231199859","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Aerothermodynamic analysis and rear wake assessment of shock wave interference over blunt leading edge at Mach 6.5
A detailed numerical study of shock-wave interference on a cylindrical blunt leading edge in hypersonic flow is carried out to reveal the effect of shock-shock interaction on peak heating and blunt body aerodynamics. This study is unique in that it examines the effect of interactions on rear wake formation and aerodynamic forces acting on the blunt body. Six different shock wave interference patterns described by Edney are studied for a freestream Mach number of 6.5. Compressible Reynolds-averaged Navier–Stokes equations are solved using finite volume method to obtain accurate prediction of the flowfield and aerodynamic loads. Hugoniot jump conditions are imposed in the inlet boundary to realize oblique shock of desired strength to interact with the detached shock at specific location. Numerical predictions are in good agreement with reported experimental measurements. The results obtained in this study reveals that the type of shock-shock interaction pattern can significantly alter the characteristics of the rear wake. Comparisons to undisturbed flow conditions reveal that Type II to VI interactions lead to an increase in wake size, whereas Type I interaction shows a marginal reduction. These changes in wake size are attributed to modifications in the forebody boundary layer induced by the shock-shock interactions. In the case of Type I interaction, however, the transmitted wave interacting with the rear wake is found to be responsible for the marginal reduction in wake size. This study also shows that changes to the rear wake structure caused by the change in interaction type can affect aerodynamic loads. Type VI interaction recorded a maximum drag coefficient of 2.96, whereas Type IV interaction yielded a maximum lift coefficient of 0.992. These findings demonstrate the potential for dynamically adjusting the control forces of a flying body by manipulating shock interference.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).