{"title":"用尾波干涉法表征和评价固体推进剂粉末脱粘损伤:实验研究与离散元模拟","authors":"Yu Pan, Deze Yang, Wenzhong Qu, Xihua Chu","doi":"10.1177/10567895231199482","DOIUrl":null,"url":null,"abstract":"The debonding of solid filler powder and binder matrix is the main form of damage for composite solid propellant. This study proposes a coda wave interference (CWI) analysis method to quantitatively characterize and evaluate the internal powder debonding damage of composite solid propellant by experiment and discrete element simulation. In order to verify the validity of numerical simulation, the discrete element method (DEM) samples to simulate the powder debonding damage of solid propellant are established, and the DEM simulation and micro-CT scanning experiment are carried out. The micro-experimental and DEM results prove the efficiency and accuracy of DEM samples in modeling the damage behaviors of solid propellant specimens. Furthermore, in order to quantitatively characterize and evaluate powder debonding damage of solid propellant, using CWI method to analyze the damage states of solid propellants in the experiment and DEM simulation of tension. Two coda evaluation parameters based on different damage states are proposed, and the relationship curves of coda evaluation parameters and tensile strain are obtained. Though the analysis of the curve results of experiment and DEM simulation, the validity of CWI is demonstrated. The coda evaluation parameters can quantitatively identify and judge the accumulation process of initial damage, the appearance of micro holes and the failure point of propellant.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"48 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coda wave interferometry to characterize and evaluate the powder debonding damage of solid propellant: Experimental investigation and discrete element simulation\",\"authors\":\"Yu Pan, Deze Yang, Wenzhong Qu, Xihua Chu\",\"doi\":\"10.1177/10567895231199482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The debonding of solid filler powder and binder matrix is the main form of damage for composite solid propellant. This study proposes a coda wave interference (CWI) analysis method to quantitatively characterize and evaluate the internal powder debonding damage of composite solid propellant by experiment and discrete element simulation. In order to verify the validity of numerical simulation, the discrete element method (DEM) samples to simulate the powder debonding damage of solid propellant are established, and the DEM simulation and micro-CT scanning experiment are carried out. The micro-experimental and DEM results prove the efficiency and accuracy of DEM samples in modeling the damage behaviors of solid propellant specimens. Furthermore, in order to quantitatively characterize and evaluate powder debonding damage of solid propellant, using CWI method to analyze the damage states of solid propellants in the experiment and DEM simulation of tension. Two coda evaluation parameters based on different damage states are proposed, and the relationship curves of coda evaluation parameters and tensile strain are obtained. Though the analysis of the curve results of experiment and DEM simulation, the validity of CWI is demonstrated. The coda evaluation parameters can quantitatively identify and judge the accumulation process of initial damage, the appearance of micro holes and the failure point of propellant.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895231199482\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10567895231199482","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A coda wave interferometry to characterize and evaluate the powder debonding damage of solid propellant: Experimental investigation and discrete element simulation
The debonding of solid filler powder and binder matrix is the main form of damage for composite solid propellant. This study proposes a coda wave interference (CWI) analysis method to quantitatively characterize and evaluate the internal powder debonding damage of composite solid propellant by experiment and discrete element simulation. In order to verify the validity of numerical simulation, the discrete element method (DEM) samples to simulate the powder debonding damage of solid propellant are established, and the DEM simulation and micro-CT scanning experiment are carried out. The micro-experimental and DEM results prove the efficiency and accuracy of DEM samples in modeling the damage behaviors of solid propellant specimens. Furthermore, in order to quantitatively characterize and evaluate powder debonding damage of solid propellant, using CWI method to analyze the damage states of solid propellants in the experiment and DEM simulation of tension. Two coda evaluation parameters based on different damage states are proposed, and the relationship curves of coda evaluation parameters and tensile strain are obtained. Though the analysis of the curve results of experiment and DEM simulation, the validity of CWI is demonstrated. The coda evaluation parameters can quantitatively identify and judge the accumulation process of initial damage, the appearance of micro holes and the failure point of propellant.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).