用尾波干涉法表征和评价固体推进剂粉末脱粘损伤:实验研究与离散元模拟

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2023-09-15 DOI:10.1177/10567895231199482
Yu Pan, Deze Yang, Wenzhong Qu, Xihua Chu
{"title":"用尾波干涉法表征和评价固体推进剂粉末脱粘损伤:实验研究与离散元模拟","authors":"Yu Pan, Deze Yang, Wenzhong Qu, Xihua Chu","doi":"10.1177/10567895231199482","DOIUrl":null,"url":null,"abstract":"The debonding of solid filler powder and binder matrix is the main form of damage for composite solid propellant. This study proposes a coda wave interference (CWI) analysis method to quantitatively characterize and evaluate the internal powder debonding damage of composite solid propellant by experiment and discrete element simulation. In order to verify the validity of numerical simulation, the discrete element method (DEM) samples to simulate the powder debonding damage of solid propellant are established, and the DEM simulation and micro-CT scanning experiment are carried out. The micro-experimental and DEM results prove the efficiency and accuracy of DEM samples in modeling the damage behaviors of solid propellant specimens. Furthermore, in order to quantitatively characterize and evaluate powder debonding damage of solid propellant, using CWI method to analyze the damage states of solid propellants in the experiment and DEM simulation of tension. Two coda evaluation parameters based on different damage states are proposed, and the relationship curves of coda evaluation parameters and tensile strain are obtained. Though the analysis of the curve results of experiment and DEM simulation, the validity of CWI is demonstrated. The coda evaluation parameters can quantitatively identify and judge the accumulation process of initial damage, the appearance of micro holes and the failure point of propellant.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"48 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coda wave interferometry to characterize and evaluate the powder debonding damage of solid propellant: Experimental investigation and discrete element simulation\",\"authors\":\"Yu Pan, Deze Yang, Wenzhong Qu, Xihua Chu\",\"doi\":\"10.1177/10567895231199482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The debonding of solid filler powder and binder matrix is the main form of damage for composite solid propellant. This study proposes a coda wave interference (CWI) analysis method to quantitatively characterize and evaluate the internal powder debonding damage of composite solid propellant by experiment and discrete element simulation. In order to verify the validity of numerical simulation, the discrete element method (DEM) samples to simulate the powder debonding damage of solid propellant are established, and the DEM simulation and micro-CT scanning experiment are carried out. The micro-experimental and DEM results prove the efficiency and accuracy of DEM samples in modeling the damage behaviors of solid propellant specimens. Furthermore, in order to quantitatively characterize and evaluate powder debonding damage of solid propellant, using CWI method to analyze the damage states of solid propellants in the experiment and DEM simulation of tension. Two coda evaluation parameters based on different damage states are proposed, and the relationship curves of coda evaluation parameters and tensile strain are obtained. Though the analysis of the curve results of experiment and DEM simulation, the validity of CWI is demonstrated. The coda evaluation parameters can quantitatively identify and judge the accumulation process of initial damage, the appearance of micro holes and the failure point of propellant.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895231199482\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10567895231199482","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体填料粉与粘结剂基体的脱粘是复合固体推进剂的主要破坏形式。本文提出了一种尾波干涉(CWI)分析方法,通过实验和离散元模拟对复合固体推进剂内部粉末脱粘损伤进行定量表征和评价。为了验证数值模拟的有效性,建立了模拟固体推进剂粉末脱粘损伤的离散元法(DEM)样本,并进行了DEM模拟和微ct扫描实验。微观实验和数值模拟结果证明了数值模拟方法在模拟固体推进剂损伤行为方面的有效性和准确性。此外,为了定量表征和评价固体推进剂的粉末脱粘损伤,采用CWI方法对实验中固体推进剂的损伤状态进行了分析,并对张力进行了DEM模拟。提出了两种基于不同损伤状态的尾轴评价参数,得到了尾轴评价参数与拉伸应变的关系曲线。通过对实验曲线结果和DEM模拟结果的分析,验证了CWI的有效性。尾数评价参数可以定量地识别和判断初始损伤的积累过程、微孔的出现以及推进剂的失效点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A coda wave interferometry to characterize and evaluate the powder debonding damage of solid propellant: Experimental investigation and discrete element simulation
The debonding of solid filler powder and binder matrix is the main form of damage for composite solid propellant. This study proposes a coda wave interference (CWI) analysis method to quantitatively characterize and evaluate the internal powder debonding damage of composite solid propellant by experiment and discrete element simulation. In order to verify the validity of numerical simulation, the discrete element method (DEM) samples to simulate the powder debonding damage of solid propellant are established, and the DEM simulation and micro-CT scanning experiment are carried out. The micro-experimental and DEM results prove the efficiency and accuracy of DEM samples in modeling the damage behaviors of solid propellant specimens. Furthermore, in order to quantitatively characterize and evaluate powder debonding damage of solid propellant, using CWI method to analyze the damage states of solid propellants in the experiment and DEM simulation of tension. Two coda evaluation parameters based on different damage states are proposed, and the relationship curves of coda evaluation parameters and tensile strain are obtained. Though the analysis of the curve results of experiment and DEM simulation, the validity of CWI is demonstrated. The coda evaluation parameters can quantitatively identify and judge the accumulation process of initial damage, the appearance of micro holes and the failure point of propellant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Formulation and verification of an anisotropic damage plasticity constitutive model for plain concrete On effective moduli of defective beam lattices via the lattice green’s functions Multi-scale study on the fatigue mechanical properties and energy laws of thermal-damage granite under fatigue loading A comparative study on combined high and low cycle fatigue life prediction model considering loading interaction Micro-damage instability mechanisms in composite materials: Cracking coalescence versus fibre ductility and slippage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1