{"title":"多壁碳纳米管上异氰酸酯基团的等离子体功能化机制","authors":"Daisuke Ogawa, Keiji Nakamura","doi":"10.1116/6.0002835","DOIUrl":null,"url":null,"abstract":"This article reports a possible functionalization mechanism of isocyanate (NCO) groups on multiwalled carbon nanotubes (CNTs) with low-temperature plasma. The mechanism was clarified according to the analysis with two plasmas generated with the gas mixture of (1) nitrogen and carbon dioxide and (2) nitrogen and oxygen. We analyzed the mechanism through optical emission spectroscopy from these plasmas and the NCO functionalization ratio measured with the fluorescent method after plasma exposure over CNTs. The optical emission gave us information on the quantitative analysis of the gas species of atomic nitrogen (N), atomic oxygen (O), and carbon monoxide (CO) and the qualitative analysis of carbon nitride (CN) species in the plasma. Compared with our results from the gas species in the plasma and the NCO functionalization ratio on CNTs, CO and CN species in the gas phase in plasma are less likely to contribute to forming NCO groups on CNTs. Rather, the equal densities of atomic nitrogen and oxygen species in the plasma could be effective in forming NCO groups on the CNT surface: the NCO groups should form by N, O, and carbon (C) species on the CNT surface. The groups likely build up gradually by N, O, and C individually reaching a CNT surface, or the NCO radicals form in the gas phase and then attach to the CNT surface.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"205 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma functionalization mechanism to modify isocyanate groups on multiwalled carbon nanotubes\",\"authors\":\"Daisuke Ogawa, Keiji Nakamura\",\"doi\":\"10.1116/6.0002835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reports a possible functionalization mechanism of isocyanate (NCO) groups on multiwalled carbon nanotubes (CNTs) with low-temperature plasma. The mechanism was clarified according to the analysis with two plasmas generated with the gas mixture of (1) nitrogen and carbon dioxide and (2) nitrogen and oxygen. We analyzed the mechanism through optical emission spectroscopy from these plasmas and the NCO functionalization ratio measured with the fluorescent method after plasma exposure over CNTs. The optical emission gave us information on the quantitative analysis of the gas species of atomic nitrogen (N), atomic oxygen (O), and carbon monoxide (CO) and the qualitative analysis of carbon nitride (CN) species in the plasma. Compared with our results from the gas species in the plasma and the NCO functionalization ratio on CNTs, CO and CN species in the gas phase in plasma are less likely to contribute to forming NCO groups on CNTs. Rather, the equal densities of atomic nitrogen and oxygen species in the plasma could be effective in forming NCO groups on the CNT surface: the NCO groups should form by N, O, and carbon (C) species on the CNT surface. The groups likely build up gradually by N, O, and C individually reaching a CNT surface, or the NCO radicals form in the gas phase and then attach to the CNT surface.\",\"PeriodicalId\":17490,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002835\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002835","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Plasma functionalization mechanism to modify isocyanate groups on multiwalled carbon nanotubes
This article reports a possible functionalization mechanism of isocyanate (NCO) groups on multiwalled carbon nanotubes (CNTs) with low-temperature plasma. The mechanism was clarified according to the analysis with two plasmas generated with the gas mixture of (1) nitrogen and carbon dioxide and (2) nitrogen and oxygen. We analyzed the mechanism through optical emission spectroscopy from these plasmas and the NCO functionalization ratio measured with the fluorescent method after plasma exposure over CNTs. The optical emission gave us information on the quantitative analysis of the gas species of atomic nitrogen (N), atomic oxygen (O), and carbon monoxide (CO) and the qualitative analysis of carbon nitride (CN) species in the plasma. Compared with our results from the gas species in the plasma and the NCO functionalization ratio on CNTs, CO and CN species in the gas phase in plasma are less likely to contribute to forming NCO groups on CNTs. Rather, the equal densities of atomic nitrogen and oxygen species in the plasma could be effective in forming NCO groups on the CNT surface: the NCO groups should form by N, O, and carbon (C) species on the CNT surface. The groups likely build up gradually by N, O, and C individually reaching a CNT surface, or the NCO radicals form in the gas phase and then attach to the CNT surface.
期刊介绍:
Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.