集成了rsa -2048位公钥加密解决方案,用于开发安全的语音识别处理应用

Nhu-Quynh Luc, Duc-Huy Quach, Chi-Hung Vu, Hong-Truong Nguyen, Thanh-Long Vo-Khac
{"title":"集成了rsa -2048位公钥加密解决方案,用于开发安全的语音识别处理应用","authors":"Nhu-Quynh Luc, Duc-Huy Quach, Chi-Hung Vu, Hong-Truong Nguyen, Thanh-Long Vo-Khac","doi":"10.31276/vjste.65(3).03-07","DOIUrl":null,"url":null,"abstract":"The authors initially employs the fast Fourier transform (FFT) approach to transforming voice inputs into digital signals before integrating a speech recognition solution (which includes two models: the hidden Markov model (HMM) and the artificial neural network (ANN)). To achieve standard-tone identification of voice signals and digitally store speech, the authors then incorporated a 2048-bit Rivest-Shamir-Adleman (RSA) encryption method to encrypt and decrypt digital speech. The authors’ building team constructed the program using a 256-bit advanced encryption standard - Galois counter mode (AES-GCM) encryption method to assure the application’s effectiveness. The authors successfully created a voice recognition application according to the HMM of ANN. The collected findings suggest that the authors’ secure speech recognition program (named soft voice - RSA) has improved in terms of safety, keeping speech material secret, and speed. It takes roughly 0.2 s to generate a 2048-bit RSA key pair that exceeds the National Institute of Standards and Technology (NIST) standard, 700-1070 ms to process speech, 1-4 ms to encrypt 2048-bit RSA, 6-8 ms to decrypt 2048-bit RSA.","PeriodicalId":23548,"journal":{"name":"Vietnam Journal of Science, Technology and Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of an RSA-2048-bit public key cryptography solution in the development of secure voice recognition processing applications\",\"authors\":\"Nhu-Quynh Luc, Duc-Huy Quach, Chi-Hung Vu, Hong-Truong Nguyen, Thanh-Long Vo-Khac\",\"doi\":\"10.31276/vjste.65(3).03-07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors initially employs the fast Fourier transform (FFT) approach to transforming voice inputs into digital signals before integrating a speech recognition solution (which includes two models: the hidden Markov model (HMM) and the artificial neural network (ANN)). To achieve standard-tone identification of voice signals and digitally store speech, the authors then incorporated a 2048-bit Rivest-Shamir-Adleman (RSA) encryption method to encrypt and decrypt digital speech. The authors’ building team constructed the program using a 256-bit advanced encryption standard - Galois counter mode (AES-GCM) encryption method to assure the application’s effectiveness. The authors successfully created a voice recognition application according to the HMM of ANN. The collected findings suggest that the authors’ secure speech recognition program (named soft voice - RSA) has improved in terms of safety, keeping speech material secret, and speed. It takes roughly 0.2 s to generate a 2048-bit RSA key pair that exceeds the National Institute of Standards and Technology (NIST) standard, 700-1070 ms to process speech, 1-4 ms to encrypt 2048-bit RSA, 6-8 ms to decrypt 2048-bit RSA.\",\"PeriodicalId\":23548,\"journal\":{\"name\":\"Vietnam Journal of Science, Technology and Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Science, Technology and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31276/vjste.65(3).03-07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Science, Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31276/vjste.65(3).03-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者首先采用快速傅立叶变换(FFT)方法将语音输入转换为数字信号,然后集成语音识别解决方案(包括两个模型:隐马尔可夫模型(HMM)和人工神经网络(ANN))。为了实现语音信号的标准音调识别和数字存储语音,作者随后采用2048位的Rivest-Shamir-Adleman (RSA)加密方法对数字语音进行加密和解密。作者的构建团队使用256位高级加密标准-伽罗瓦计数器模式(AES-GCM)加密方法构建程序,以确保应用程序的有效性。作者根据神经网络的HMM成功地创建了一个语音识别应用程序。收集到的结果表明,作者的安全语音识别程序(命名为soft voice - RSA)在安全性、对语音材料的保密和速度方面都有所改进。生成一个超过美国国家标准与技术研究院(NIST)标准的2048位RSA密钥对大约需要0.2秒,处理语音需要700-1070毫秒,加密2048位RSA需要1-4毫秒,解密2048位RSA需要6-8毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of an RSA-2048-bit public key cryptography solution in the development of secure voice recognition processing applications
The authors initially employs the fast Fourier transform (FFT) approach to transforming voice inputs into digital signals before integrating a speech recognition solution (which includes two models: the hidden Markov model (HMM) and the artificial neural network (ANN)). To achieve standard-tone identification of voice signals and digitally store speech, the authors then incorporated a 2048-bit Rivest-Shamir-Adleman (RSA) encryption method to encrypt and decrypt digital speech. The authors’ building team constructed the program using a 256-bit advanced encryption standard - Galois counter mode (AES-GCM) encryption method to assure the application’s effectiveness. The authors successfully created a voice recognition application according to the HMM of ANN. The collected findings suggest that the authors’ secure speech recognition program (named soft voice - RSA) has improved in terms of safety, keeping speech material secret, and speed. It takes roughly 0.2 s to generate a 2048-bit RSA key pair that exceeds the National Institute of Standards and Technology (NIST) standard, 700-1070 ms to process speech, 1-4 ms to encrypt 2048-bit RSA, 6-8 ms to decrypt 2048-bit RSA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on some biological characteristics of the albino strain of medicinal fungus Cordyceps militaris isolated in Vietnam Development of a PCB-based passive capacitive sensor for fluidic flow detection Degradation of acrylic-melamine based varnish containing Tinuvin 292 with accelerated exposure in fluorescent UV and condensation Study on synthesis of carboxymethyl cellulose from pineapple leaf waste and its potential applications as a thickener Fabrication of transparent flexible electrodes on polyethylene terephthalate substrate with high conductivity, high transmittance, and excellent stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1